Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4722, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543679

RESUMEN

Studies of vacancy-mediated anomalous transport properties have flourished in diverse fields since these properties endow solid materials with fascinating photoelectric, ferroelectric, and spin-electric behaviors. Although phononic and electronic transport underpin the physical origin of thermoelectrics, vacancy has only played a stereotyped role as a scattering center. Here we reveal the multifunctionality of vacancy in tailoring the transport properties of an emerging thermoelectric material, defective n-type ZrNiBi. The phonon kinetic process is mediated in both propagating velocity and relaxation time: vacancy-induced local soft bonds lower the phonon velocity while acoustic-optical phonon coupling, anisotropic vibrations, and point-defect scattering induced by vacancy shorten the relaxation time. Consequently, defective ZrNiBi exhibits the lowest lattice thermal conductivity among the half-Heusler family. In addition, a vacancy-induced flat band features prominently in its electronic band structure, which is not only desirable for electron-sufficient thermoelectric materials but also interesting for driving other novel physical phenomena. Finally, better thermoelectric performance is established in a ZrNiBi-based compound. Our findings not only demonstrate a promising thermoelectric material but also promote the fascinating vacancy-mediated anomalous transport properties for multidisciplinary explorations.

2.
Nature ; 618(7967): 946-950, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286603

RESUMEN

The concept of chirality is of great relevance in nature, from chiral molecules such as sugar to parity transformations in particle physics. In condensed matter physics, recent studies have demonstrated chiral fermions and their relevance in emergent phenomena closely related to topology1-3. The experimental verification of chiral phonons (bosons) remains challenging, however, despite their expected strong impact on fundamental physical properties4-6. Here we show experimental proof of chiral phonons using resonant inelastic X-ray scattering with circularly polarized X-rays. Using the prototypical chiral material quartz, we demonstrate that circularly polarized X-rays, which are intrinsically chiral, couple to chiral phonons at specific positions in reciprocal space, allowing us to determine the chiral dispersion of the lattice modes. Our experimental proof of chiral phonons demonstrates a new degree of freedom in condensed matter that is both of fundamental importance and opens the door to exploration of new emergent phenomena based on chiral bosons.

3.
J Phys Condens Matter ; 35(28)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37044100

RESUMEN

Spintronics is an emerging form of electronics based on the electrons' spin degree of freedom for which materials with robust half-metallic ferromagnet character are very attractive. Here we determine the structural stability, electronic, magnetic, and mechanical properties of the half-Heusler (hH) compound CoFeGe, in particular also in its cubic form. The first-principles calculations suggest that the electronic structure is robust with 100% spin polarization at the Fermi level under hydrostatic pressure and uni-axial strain. Both the longitudinal and Hall current polarization are calculated and the longitudinal current polarization (PL) is found to be>99%and extremely robust under uniform pressure and uni-axial strain. The anomalous Hall conductivity and spin Hall conductivity of hH cubic CoFeGe (c-CoFeGe) are found to be∼-100S cm-1and∼39 ℏ/eS cm-1, respectively. Moreover, the Curie temperature of the alloy is calculated to be ∼524 K with a 3µBmagnetic moment. Lastly, the calculated mechanical properties indicate thatc-CoFeGe is ductile and mechanically stable with a bulk modulus of ≈154 GPa. Overall, this analysis reveals that cubic CoFeGe is a robust half-metallic ferromagnet and an interesting material for spintronic applications.

4.
Adv Sci (Weinh) ; 10(10): e2203239, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36802132

RESUMEN

The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi2 Te4 and MnBi4 Te7 benchmark the (MnBi2 Te4 )(Bi2 Te3 )n family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi2 Te4 septuple layers (SLs). However, the QAHE realization is complicated in MnBi2 Te4 and MnBi4 Te7 due to the substantial antiferromagnetic (AFM) coupling between the SLs. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SLs with an increasing number n of Bi2 Te3 quintuple layers (QLs). However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, robust FM properties in MnBi6 Te10 (n = 2) with Tc ≈ 12 K are demonstrated and their origin is established in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. The measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. This investigation thus consolidates the MnBi6 Te10 system as perspective for the QAHE at elevated temperatures.

5.
Nano Lett ; 23(4): 1229-1235, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36720048

RESUMEN

Symmetry breaking in topological matter has become in recent years a key concept in condensed matter physics to unveil novel electronic states. In this work, we predict that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi2 lead to a type-I Weyl semimetal band structure. Transport measurements show an unusually robust low dimensional superconductivity in thin exfoliated flakes up to 126 nm in thickness (with Tc ∼ 275-400 mK), which constitutes the first report and study of unambiguous superconductivity in a type-I Weyl semimetal. Remarkably, a Berezinskii-Kosterlitz-Thouless transition with TBKT ∼ 310 mK is revealed in up to 60 nm thick flakes, which is nearly an order of magnitude thicker than the rare examples of two-dimensional superconductors exhibiting such a transition. This makes PtBi2 an ideal platform to study low dimensional and unconventional superconductivity in topological semimetals.

6.
Phys Rev Lett ; 129(22): 227203, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36493427

RESUMEN

There is a number of contradictory findings with regard to whether the theory describing easy-plane quantum antiferromagnets undergoes a second-order phase transition. The traditional Landau-Ginzburg-Wilson approach suggests a first-order phase transition, as there are two different competing order parameters. On the other hand, it is known that the theory has the property of self-duality which has been connected to the existence of a deconfined quantum critical point (DQCP). The latter regime suggests that order parameters are not the elementary building blocks of the theory, but rather consist of fractionalized particles that are confined in both phases of the transition and only appear-deconfine-at the critical point. Nevertheless, many numerical Monte Carlo simulations disagree with the claim of a DQCP in the system, indicating instead a first-order phase transition. Here we establish from exact lattice duality transformations and renormalization group analysis that the easy-plane CP^{1} antiferromagnet does feature a DQCP. We uncover the criticality starting from a regime analogous to the zero temperature limit of a certain classical statistical mechanics system which we therefore dub frozen. At criticality our bosonic theory is dual to a fermionic one with two massless Dirac fermions, which thus undergoes a second-order phase transition as well.


Asunto(s)
Física , Método de Montecarlo , Transición de Fase , Temperatura
7.
J Phys Condens Matter ; 34(45)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36063811

RESUMEN

For thermoelectric applications those materials are of interest that have significant power factor (PF) and low lattice thermal conductivity,κL. Here we theoretically exploreκLof two novel materials SrAgP and BaAgP using linearized Boltzmann transport equation with a single-mode relaxation time approach. We estimate the figure of meritzTby employingab-initiocalculations based on density functional theory and semiclassical Boltzmann transport theory. It is observed that at room temperature SrAgP exhibits slightly higher lattice thermal conductivity than BaAgP, which is mainly due to the large phonon group velocity. The relaxation time derived from deformation potential theory indicates a higherp-type PF for SrAgP compared to BaAgP over the entire temperature range. This provides an estimate for the figure of merit for the two materials. The low lattice thermal conductivity and higher PF make SrAgP a more promising thermoelectric material.

8.
Phys Rev Lett ; 129(8): 086601, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36053685

RESUMEN

Physically, one tends to think of non-Hermitian systems in terms of gain and loss: the decay or amplification of a mode is given by the imaginary part of its energy. Here, we introduce an alternative avenue to the realm of non-Hermitian physics, which involves neither gain nor loss. Instead, complex eigenvalues emerge from the amplitudes and phase differences of waves backscattered from the boundary of insulators. We show that for any strong topological insulator in a Wigner-Dyson class, the reflected waves are characterized by a reflection matrix exhibiting the non-Hermitian skin effect. This leads to an unconventional Goos-Hänchen effect: due to non-Hermitian topology, waves undergo a lateral shift upon reflection, even at normal incidence. Going beyond systems with gain and loss vastly expands the set of experimental platforms that can access non-Hermitian physics and show signatures associated with non-Hermitian topology.

9.
Phys Rev Lett ; 127(4): 045701, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34355966

RESUMEN

Two-dimensional quantum systems with competing orders can feature a deconfined quantum critical point, yielding a continuous phase transition that is incompatible with the Landau-Ginzburg-Wilson scenario, predicting instead a first-order phase transition. This is caused by the LGW order parameter breaking up into new elementary excitations at the critical point. Canonical candidates for deconfined quantum criticality are quantum antiferromagnets with competing magnetic orders, captured by the easy-plane CP^{1} model. A delicate issue however is that numerics indicates the easy-plane CP^{1} antiferromagnet to exhibit a first-order transition. Here we show that an additional topological Chern-Simons term in the action changes this picture completely in several ways. We find that the topological easy-plane antiferromagnet undergoes a second-order transition with quantized critical exponents. Further, a particle-vortex duality naturally maps the partition function of the Chern-Simons easy-plane antiferromagnet into one of massless Dirac fermions.

10.
Phys Rev Lett ; 127(5): 056601, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397225

RESUMEN

We show that Weyl Fermi arcs are generically accompanied by a divergence of the surface Berry curvature scaling as 1/k^{2}, where k is the distance to a hot line in the surface Brillouin zone that connects the projection of Weyl nodes with opposite chirality, but which is distinct from the Fermi arc itself. Such surface Berry curvature appears whenever the bulk Weyl dispersion has a velocity tilt toward the surface of interest. This divergence is reflected in a variety of Berry curvature mediated effects that are readily accessible experimentally and, in particular, leads to a surface Berry curvature dipole that grows linearly with the thickness of a slab of a Weyl semimetal material in the limit of the long lifetime of surface states. This implies the emergence of a gigantic contribution to the nonlinear Hall effect in such devices.

11.
Phys Rev Lett ; 126(10): 106401, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33784112

RESUMEN

We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF_{3} using the Cu L_{3}-edge resonant inelastic x-ray scattering. We show that the nondispersive high-energy peaks result from the Cu^{2+} dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Müller ansatz calculations. The localized dd excitations and the observation of the strongly dispersive magnetic excitations suggest that the orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong local Jahn-Teller effect in KCuF_{3}, which predominantly drives orbital ordering.

12.
Nano Lett ; 20(11): 8157-8162, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-32986440

RESUMEN

Antiferromagnets host exotic quasiparticles, support high frequency excitations and are key enablers of the prospective spintronic and spin-orbitronic technologies. Here, we propose a concept of a curvilinear antiferromagnetism where material responses can be tailored by a geometrical curvature without the need to adjust material parameters. We show that an intrinsically achiral one-dimensional (1D) curvilinear antiferromagnet behaves as a chiral helimagnet with geometrically tunable Dzyaloshinskii-Moriya interaction (DMI) and orientation of the Néel vector. The curvature-induced DMI results in the hybridization of spin wave modes and enables a geometrically driven local minimum of the low-frequency branch. This positions curvilinear 1D antiferromagnets as a novel platform for the realization of geometrically tunable chiral antiferromagnets for antiferromagnetic spin-orbitronics and fundamental discoveries in the formation of coherent magnon condensates in the momentum space.

13.
Nat Mater ; 19(2): 163-169, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31819211

RESUMEN

A kagome lattice of 3d transition metal ions is a versatile platform for correlated topological phases hosting symmetry-protected electronic excitations and magnetic ground states. However, the paradigmatic states of the idealized two-dimensional kagome lattice-Dirac fermions and flat bands-have not been simultaneously observed. Here, we use angle-resolved photoemission spectroscopy and de Haas-van Alphen quantum oscillations to reveal coexisting surface and bulk Dirac fermions as well as flat bands in the antiferromagnetic kagome metal FeSn, which has spatially decoupled kagome planes. Our band structure calculations and matrix element simulations demonstrate that the bulk Dirac bands arise from in-plane localized Fe-3d orbitals, and evidence that the coexisting Dirac surface state realizes a rare example of fully spin-polarized two-dimensional Dirac fermions due to spin-layer locking in FeSn. The prospect to harness these prototypical excitations in a kagome lattice is a frontier of great promise at the confluence of topology, magnetism and strongly correlated physics.

14.
Nano Lett ; 20(1): 300-305, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31774686

RESUMEN

Weyl semimetals exhibit interesting electronic properties due to their topological band structure. In particular, large anomalous Hall and anomalous Nernst signals are often reported, which allow for a detailed and quantitative study of subtle features. We pattern single crystals of the magnetic Weyl semimetal Co3Sn2S2 into nanoribbon devices using focused ion beam cutting and optical lithography. This approach enables a very precise study of the galvano- and thermomagnetic transport properties. Indeed, we found interesting features in the temperature dependency of the anomalous Hall and Nernst effects. We present an analysis of the data based on the Mott relation and identify in the Nernst response signatures of magnetic fluctuations enhancing the anomalous Nernst conductivity at the magnetic phase transition.

15.
J Phys Condens Matter ; 32(5): 055505, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31618723

RESUMEN

We screened six cobalt-based 18-VEC systems CoVSi, CoNbSi, CoTaSi (Si-group) and CoVGe, CoNbGe, CoTaGe (Ge-group) by the first-principles approach, with the motivation of stabilizing these orthorhombic phases into the cubic symmetry-favorable for thermoelectrics. Remarkably, it was found that the Ge-group is energetically more favorable in the cubic symmetry than the hitherto orthorhombic phase. We account the cubic ground state of the Si-group to the interplay of internal pressure and covalent interactions. The principle of reducing covalent interactions will provide insight and could be vital in speeding the search of missing cubic half-Heusler alloys. Meanwhile, the calculated transport properties of all the systems on p -type doping, except CoVSi, are more promising than the well-known CoTiSb. We also provide conservative estimates of the figure of merit, exceeding the CoTiSb. Based on our findings, we suggest possible new phases of ternary compounds for thermoelectric applications.

16.
J Phys Condens Matter ; 31(50): 505504, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31470439

RESUMEN

We investigated the cubic-hexagonal phase transition and its effect on thermoelectric performance in Li-based Nowotny-Juza phases LiZn X (X = N, P, As, Sb, and Bi). Interestingly, other than LiZnSb, the cubic LiZnBi is found to be energetically more favorable than the hitherto reported hexagonal phase. The hexagonal phases of reported cubic LiZnP and LiZnAs are likely to be stabilized by pressure-hydrostatic pressure can be aided by internal pressure. We find that while power factor values are much improved in the proposed hexagonal phases, the values in cubic phases are also impressive. We also determine conservative estimates of the figure of merit. The ZT values of cubic and hexagonal LiZnSb at 700 K are 1.27 and 1.95, respectively. Other promising values are 1.96 and 1.49 at 700 K of hexagonal n-type LiZnP and LiZnAs, respectively. Overall, our findings suggest the good thermoelectric potential of Nowotny-Juza phases.

17.
Nat Commun ; 10(1): 3424, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366883

RESUMEN

Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.

18.
Phys Rev Lett ; 123(2): 027001, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386544

RESUMEN

We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa_{2}Cu_{3}O_{6} and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.

19.
Chem Sci ; 10(6): 1866-1872, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30842855

RESUMEN

Novel functionalities may be achieved in oxide electronics by appropriate stacking of planar oxide layers of different metallic species, MO p and M'O q . The simplest mechanism allowing the tailoring of the electronic states and physical properties of such heterostructures is of electrostatic nature-charge imbalance between the M and M' cations. Here we clarify the effect of interlayer electrostatics on the anisotropic Kitaev exchange in H3LiIr2O6, a recently proposed realization of the Kitaev spin liquid. By quantum chemical calculations, we show that the precise position of H+ cations between magnetically active [LiIr2O6]3- honeycomb-like layers has a strong impact on the magnitude of Kitaev interactions. In particular, it is found that stacking with straight interlayer O-H-O links is detrimental to in-plane Kitaev exchange since coordination by a single H-ion of the O ligand implies an axial Coulomb potential at the O site and unfavorable polarization of the O 2p orbitals mediating the Ir-Ir interactions. Our results therefore provide valuable guidelines for the rational design of Kitaev quantum magnets, indicating unprecedented Kitaev interactions of ≈40 meV if the linear interlayer linkage is removed.

20.
Phys Rev Lett ; 121(22): 227001, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30547607

RESUMEN

Recently, two fundamental topological properties of a magnetic vortex at the interface of a superconductor (SC) and a strong topological insulator (TI) have been established: The vortex carries both a Majorana zero mode relevant for topological quantum computation and, for a time-reversal invariant TI, a charge of e/4. This fractional charge is caused by the axion term in the electromagnetic Lagrangian of the TI. Here we determine the angular momentum J of the vortices, which in turn determines their mutual statistics. Solving the axion-London electrodynamic equations including screening in both a SC and a TI, we find that the elementary quantum of angular momentum of the vortex is -n^{2}ℏ/8, where n is the flux quantum of the vortex line. Exchanging two elementary fluxes thus changes the phase of the wave function by -π/4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA