Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913125

RESUMEN

Ryanodine receptors (RyRs) exhibit dynamic arrangements in cardiomyocytes, and we previously showed that 'dispersion' of RyR clusters disrupts Ca2+ homeostasis during heart failure (HF) (Kolstad et al., eLife, 2018). Here, we investigated whether prolonged ß-adrenergic stimulation, a hallmark of HF, promotes RyR cluster dispersion and examined the underlying mechanisms. We observed that treatment of healthy rat cardiomyocytes with isoproterenol for 1 hr triggered progressive fragmentation of RyR clusters. Pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed these effects, while cluster dispersion was reproduced by specific activation of CaMKII, and in mice with constitutively active Ser2814-RyR. A similar role of protein kinase A (PKA) in promoting RyR cluster fragmentation was established by employing PKA activation or inhibition. Progressive cluster dispersion was linked to declining Ca2+ spark fidelity and magnitude, and slowed release kinetics from Ca2+ propagation between more numerous RyR clusters. In healthy cells, this served to dampen the stimulatory actions of ß-adrenergic stimulation over the longer term and protect against pro-arrhythmic Ca2+ waves. However, during HF, RyR dispersion was linked to impaired Ca2+ release. Thus, RyR localization and function are intimately linked via channel phosphorylation by both CaMKII and PKA, which, while finely tuned in healthy cardiomyocytes, underlies impaired cardiac function during pathology.


Asunto(s)
Insuficiencia Cardíaca , Canal Liberador de Calcio Receptor de Rianodina , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca/metabolismo , Homeostasis , Ratones , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
2.
PLoS Comput Biol ; 18(6): e1010126, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666763

RESUMEN

Super-resolution imaging techniques have provided a better understanding of the relationship between the nanoscale organization and function of ryanodine receptors (RyRs) in cardiomyocytes. Recent data have indicated that this relationship is disrupted in heart failure (HF), as RyRs are dispersed into smaller and more numerous clusters. However, RyRs are also hyperphosphorylated in this condition, and this is reported to occur preferentially within the cluster centre. Thus, the combined impact of RyR relocalization and sensitization on Ca2+ spark generation in failing cardiomyocytes is likely complex and these observations suggest that both the nanoscale organization of RyRs and the pattern of phosphorylated RyRs within clusters could be critical determinants of Ca2+ spark dynamics. To test this hypothesis, we used computational modeling to quantify the relationships between RyR cluster geometry, phosphorylation patterns, and sarcoplasmic reticulum (SR) Ca2+ release. We found that RyR cluster disruption results in a decrease in spark fidelity and longer sparks with a lower amplitude. Phosphorylation of some RyRs within the cluster can play a compensatory role, recovering healthy spark dynamics. Interestingly, our model predicts that such compensation is critically dependent on the phosphorylation pattern, as phosphorylation localized within the cluster center resulted in longer Ca2+ sparks and higher spark fidelity compared to a uniformly distributed phosphorylation pattern. Our results strongly suggest that both the phosphorylation pattern and nanoscale RyR reorganization are critical determinants of Ca2+ dynamics in HF.


Asunto(s)
Insuficiencia Cardíaca , Canal Liberador de Calcio Receptor de Rianodina , Calcio/metabolismo , Señalización del Calcio/fisiología , Humanos , Miocitos Cardíacos/fisiología , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
J Physiol ; 597(2): 399-418, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30412283

RESUMEN

KEY POINTS: Using 3D direct stochastic optical reconstruction microscopy (dSTORM), we developed novel approaches to quantitatively describe the nanoscale, 3D organization of ryanodine receptors (RyRs) in cardiomyocytes. Complex arrangements of RyR clusters were observed in 3D space, both at the cell surface and within the cell interior, with allocation to dyadic and non-dyadic pools. 3D imaging importantly allowed discernment of clusters overlapping in the z-axis, for which detection was obscured by conventional 2D imaging techniques. Thus, RyR clusters were found to be significantly smaller than previous 2D estimates. Ca2+ release units (CRUs), i.e. functional groupings of neighbouring RyR clusters, were similarly observed to be smaller than earlier reports. Internal CRUs contained more RyRs in more clusters than CRUs on the cell surface, and yielded longer duration Ca2+ sparks. ABSTRACT: Cardiomyocyte contraction is dependent on Ca2+ release from ryanodine receptors (RyRs). However, the precise localization of RyRs remains unknown, due to shortcomings of imaging techniques which are diffraction limited or restricted to 2D. We aimed to determine the 3D nanoscale organization of RyRs in rat cardiomyocytes by employing direct stochastic optical reconstruction microscopy (dSTORM) with phase ramp technology. Initial observations at the cell surface showed an undulating organization of RyR clusters, resulting in their frequent overlap in the z-axis and obscured detection by 2D techniques. Non-overlapping clusters were imaged to create a calibration curve for estimating RyR number based on recorded fluorescence blinks. Employing this method at the cell surface and interior revealed smaller RyR clusters than 2D estimates, as erroneous merging of axially aligned RyRs was circumvented. Functional groupings of RyR clusters (Ca2+ release units, CRUs), contained an average of 18 and 23 RyRs at the surface and interior, respectively, although half of all CRUs contained only a single 'rogue' RyR. Internal CRUs were more tightly packed along z-lines than surface CRUs, contained larger and more numerous RyR clusters, and constituted ∼75% of the roughly 1 million RyRs present in an average cardiomyocyte. This complex internal 3D geometry was underscored by correlative imaging of RyRs and t-tubules, which enabled quantification of dyadic and non-dyadic RyR populations. Mirroring differences in CRU size and complexity, Ca2+ sparks originating from internal CRUs were of longer duration than those at the surface. These data provide novel, nanoscale insight into RyR organization and function across cardiomyocytes.


Asunto(s)
Miocitos Cardíacos/fisiología , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Señalización del Calcio/fisiología , Imagenología Tridimensional , Masculino , Microscopía Confocal , Ratas Wistar
4.
PLoS Comput Biol ; 14(10): e1006510, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30286073

RESUMEN

Many pathological conditions, such as seizures, stroke, and spreading depression, are associated with substantial changes in ion concentrations in the extracellular space (ECS) of the brain. An understanding of the mechanisms that govern ECS concentration dynamics may be a prerequisite for understanding such pathologies. To estimate the transport of ions due to electrodiffusive effects, one must keep track of both the ion concentrations and the electric potential simultaneously in the relevant regions of the brain. Although this is currently unfeasible experimentally, it is in principle achievable with computational models based on biophysical principles and constraints. Previous computational models of extracellular ion-concentration dynamics have required extensive computing power, and therefore have been limited to either phenomena on very small spatiotemporal scales (micrometers and milliseconds), or simplified and idealized 1-dimensional (1-D) transport processes on a larger scale. Here, we present the 3-D Kirchhoff-Nernst-Planck (KNP) framework, tailored to explore electrodiffusive effects on large spatiotemporal scales. By assuming electroneutrality, the KNP-framework circumvents charge-relaxation processes on the spatiotemporal scales of nanometers and nanoseconds, and makes it feasible to run simulations on the spatiotemporal scales of millimeters and seconds on a standard desktop computer. In the present work, we use the 3-D KNP framework to simulate the dynamics of ion concentrations and the electrical potential surrounding a morphologically detailed pyramidal cell. In addition to elucidating the single neuron contribution to electrodiffusive effects in the ECS, the simulation demonstrates the efficiency of the 3-D KNP framework. We envision that future applications of the framework to more complex and biologically realistic systems will be useful in exploring pathological conditions associated with large concentration variations in the ECS.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Espacio Extracelular/fisiología , Modelos Neurológicos , Modelos Estadísticos , Neuronas/fisiología , Encéfalo/citología , Encéfalo/fisiología , Biología Computacional , Simulación por Computador , Difusión , Humanos
5.
Elife ; 72018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375974

RESUMEN

Reduced cardiac contractility during heart failure (HF) is linked to impaired Ca2+ release from Ryanodine Receptors (RyRs). We investigated whether this deficit can be traced to nanoscale RyR reorganization. Using super-resolution imaging, we observed dispersion of RyR clusters in cardiomyocytes from post-infarction HF rats, resulting in more numerous, smaller clusters. Functional groupings of RyR clusters which produce Ca2+ sparks (Ca2+ release units, CRUs) also became less solid. An increased fraction of small CRUs in HF was linked to augmented 'silent' Ca2+ leak, not visible as sparks. Larger multi-cluster CRUs common in HF also exhibited low fidelity spark generation. When successfully triggered, sparks in failing cells displayed slow kinetics as Ca2+ spread across dispersed CRUs. During the action potential, these slow sparks protracted and desynchronized the overall Ca2+ transient. Thus, nanoscale RyR reorganization during HF augments Ca2+ leak and slows Ca2+ release kinetics, leading to weakened contraction in this disease.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca/patología , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Potenciales de Acción , Animales , Cationes Bivalentes/metabolismo , Modelos Animales de Enfermedad , Microscopía Fluorescente , Ratas
6.
J Mol Cell Cardiol ; 101: 26-34, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27773652

RESUMEN

BACKGROUND: Refractoriness of cardiac cells limits maximum frequency of electrical activity and protects the heart from tonic contractions. Short refractory periods support major arrhythmogenic substrates and augmentation of refractoriness is therefore seen as a main mechanism of antiarrhythmic drugs. Cardiomyocyte excitability depends on availability of sodium channels, which involves both time- and voltage-dependent recovery from inactivation. This study therefore aims to characterise how sodium channel inactivation affects refractoriness in human atria. METHODS AND RESULTS: Steady-state activation and inactivation parameters of sodium channels measured in vitro in isolated human atrial cardiomyocytes were used to parameterise a mathematical human atrial cell model. Action potential data were acquired from human atrial trabeculae of patients in either sinus rhythm or chronic atrial fibrillation. The ex vivo measurements of action potential duration, effective refractory period and resting membrane potential were well-replicated in simulations using this new in silico model. Notably, the voltage threshold potential at which refractoriness was observed was not different between sinus rhythm and chronic atrial fibrillation tissues and was neither affected by changes in frequency (1 vs. 3Hz). CONCLUSIONS: Our results suggest a preferentially voltage-dependent, rather than time-dependent, effect with respect to refractoriness at physiologically relevant rates in human atria. However, as the resting membrane potential is hyperpolarized in chronic atrial fibrillation, the voltage-dependence of excitability dominates, profoundly increasing the risk for arrhythmia re-initiation and maintenance in fibrillating atria. Our results thereby highlight resting membrane potential as a potential target in pharmacological management of chronic atrial fibrillation.


Asunto(s)
Potenciales de Acción , Función Atrial , Atrios Cardíacos/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Simulación por Computador , Humanos , Cinética , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...