Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7949, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040701

RESUMEN

Antarctic ice sheet (AIS) mass loss is predominantly driven by increased solid ice discharge, but its variability is governed by surface processes. Snowfall fluctuations control the surface mass balance (SMB) of the grounded AIS, while meltwater ponding can trigger ice shelf collapse potentially accelerating discharge. Surface processes are essential to quantify AIS mass change, but remain poorly represented in climate models typically running at 25-100 km resolution. Here we present SMB and surface melt products statistically downscaled to 2 km resolution for the contemporary climate (1979-2021) and low, moderate and high-end warming scenarios until 2100. We show that statistical downscaling modestly enhances contemporary SMB (3%), which is sufficient to reconcile modelled and satellite mass change. Furthermore, melt strongly increases (46%), notably near the grounding line, in better agreement with in-situ and satellite records. The melt increase persists by 2100 in all warming scenarios, revealing higher surface melt rates than previously estimated.

2.
Nat Commun ; 14(1): 1479, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932070

RESUMEN

Mass loss from the West Antarctic Ice Sheet is dominated by glaciers draining into the Amundsen Sea Embayment (ASE), yet the impact of anomalous precipitation on the mass balance of the ASE is poorly known. Here we present a 25-year (1996-2021) record of ASE input-output mass balance and evaluate how two periods of anomalous precipitation affected its sea level contribution. Since 1996, the ASE has lost 3331 ± 424 Gt ice, contributing 9.2 ± 1.2 mm to global sea level. Overall, surface mass balance anomalies contributed little (7.7%) to total mass loss; however, two anomalous precipitation events had larger, albeit short-lived, impacts on rates of mass change. During 2009-2013, persistently low snowfall led to an additional 51 ± 4 Gt yr-1 mass loss in those years (contributing positively to the total loss of 195 ± 4 Gt yr-1). Contrastingly, extreme precipitation in the winters of 2019 and 2020 decreased mass loss by 60 ± 16 Gt yr-1 during those years (contributing negatively to the total loss of 107 ± 15 Gt yr-1). These results emphasise the important impact of extreme snowfall variability on the short-term sea level contribution from West Antarctica.

3.
Nat Commun ; 13(1): 6870, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369265

RESUMEN

Firn (compressed snow) covers approximately 90[Formula: see text] of the Greenland ice sheet (GrIS) and currently retains about half of rain and meltwater through refreezing, reducing runoff and subsequent mass loss. The loss of firn could mark a tipping point for sustained GrIS mass loss, since decades to centuries of cold summers would be required to rebuild the firn buffer. Here we estimate the warming required for GrIS firn to reach peak refreezing, using 51 climate simulations statistically downscaled to 1 km resolution, that project the long-term firn layer evolution under multiple emission scenarios (1850-2300). We predict that refreezing stabilises under low warming scenarios, whereas under extreme warming, refreezing could peak and permanently decline starting in southwest Greenland by 2100, and further expanding GrIS-wide in the early 22[Formula: see text] century. After passing this peak, the GrIS contribution to global sea level rise would increase over twenty-fold compared to the last three decades.

4.
Geophys Res Lett ; 49(12): e2022GL098915, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35865910

RESUMEN

In recent decades, Greenland's peripheral glaciers have experienced large-scale mass loss, resulting in a substantial contribution to sea level rise. While their total area of Greenland ice cover is relatively small (4%), their mass loss is disproportionally large compared to the Greenland ice sheet. Satellite altimetry from Ice, Cloud, and land Elevation Satellite (ICESat) and ICESat-2 shows that mass loss from Greenland's peripheral glaciers increased from 27.2 ± 6.2 Gt/yr (February 2003-October 2009) to 42.3 ± 6.2 Gt/yr (October 2018-December 2021). These relatively small glaciers now constitute 11 ± 2% of Greenland's ice loss and contribute to global sea level rise. In the period October 2018-December 2021, mass loss increased by a factor of four for peripheral glaciers in North Greenland. While peripheral glacier mass loss is widespread, we also observe a complex regional pattern where increases in precipitation at high altitudes have partially counteracted increases in melt at low altitude.

5.
Rev Geophys ; 57(2): 376-420, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31598609

RESUMEN

Surface mass balance (SMB) provides mass input to the surface of the Antarctic and Greenland Ice Sheets and therefore comprises an important control on ice sheet mass balance and resulting contribution to global sea level change. As ice sheet SMB varies highly across multiple scales of space (meters to hundreds of kilometers) and time (hourly to decadal), it is notoriously challenging to observe and represent in models. In addition, SMB consists of multiple components, all of which depend on complex interactions between the atmosphere and the snow/ice surface, large-scale atmospheric circulation and ocean conditions, and ice sheet topography. In this review, we present the state-of-the-art knowledge and recent advances in ice sheet SMB observations and models, highlight current shortcomings, and propose future directions. Novel observational methods allow mapping SMB across larger areas, longer time periods, and/or at very high (subdaily) temporal frequency. As a recent observational breakthrough, cosmic ray counters provide direct estimates of SMB, circumventing the need for accurate snow density observations upon which many other techniques rely. Regional atmospheric climate models have drastically improved their simulation of ice sheet SMB in the last decade, thanks to the inclusion or improved representation of essential processes (e.g., clouds, blowing snow, and snow albedo), and by enhancing horizontal resolution (5-30 km). Future modeling efforts are required in improving Earth system models to match regional atmospheric climate model performance in simulating ice sheet SMB, and in reinforcing the efforts in developing statistical and dynamic downscaling to represent smaller-scale SMB processes.

6.
Sci Adv ; 5(9): eaaw0123, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31517042

RESUMEN

Since the early 1990s, the Greenland ice sheet (GrIS) has been losing mass at an accelerating rate, primarily due to enhanced meltwater runoff following atmospheric warming. Here, we show that a pronounced latitudinal contrast exists in the GrIS response to recent warming. The ablation area in north Greenland expanded by 46%, almost twice as much as in the south (+25%), significantly increasing the relative contribution of the north to total GrIS mass loss. This latitudinal contrast originates from a different response to the recent change in large-scale Arctic summertime atmospheric circulation, promoting southwesterly advection of warm air toward the GrIS. In the southwest, persistent high atmospheric pressure reduced cloudiness, increasing runoff through enhanced absorption of solar radiation; in contrast, increased early-summer cloudiness in north Greenland enhanced atmospheric warming through decreased longwave heat loss. This triggered a rapid snowline retreat, causing early bare ice exposure, amplifying northern runoff.

7.
Sci Adv ; 5(3): eaau8507, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30891498

RESUMEN

The Canadian Arctic Archipelago contains >300 glaciers that terminate in the ocean, but little is known about changes in their frontal positions in response to recent changes in the ocean-climate system. Here, we examine changes in glacier frontal positions since the 1950s and investigate the relative influence of oceanic temperature versus atmospheric temperature. Over 94% of glaciers retreated between 1958 and 2015, with a region-wide trend of gradual retreat before ~2000, followed by a fivefold increase in retreat rates up to 2015. Retreat patterns show no correlation with changes in subsurface ocean temperatures, in clear contrast to the dominance of ocean forcing in western Greenland and elsewhere. Rather, significant correlations with surface melt indicate that increased atmospheric temperature has been the primary driver of the acceleration in marine-terminating glacier frontal retreat in this region.

8.
Proc Natl Acad Sci U S A ; 116(6): 1934-1939, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30670639

RESUMEN

From early 2003 to mid-2013, the total mass of ice in Greenland declined at a progressively increasing rate. In mid-2013, an abrupt reversal occurred, and very little net ice loss occurred in the next 12-18 months. Gravity Recovery and Climate Experiment (GRACE) and global positioning system (GPS) observations reveal that the spatial patterns of the sustained acceleration and the abrupt deceleration in mass loss are similar. The strongest accelerations tracked the phase of the North Atlantic Oscillation (NAO). The negative phase of the NAO enhances summertime warming and insolation while reducing snowfall, especially in west Greenland, driving surface mass balance (SMB) more negative, as illustrated using the regional climate model MAR. The spatial pattern of accelerating mass changes reflects the geography of NAO-driven shifts in atmospheric forcing and the ice sheet's sensitivity to that forcing. We infer that southwest Greenland will become a major future contributor to sea level rise.

9.
Nature ; 564(7734): 104-108, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518887

RESUMEN

The Greenland ice sheet (GrIS) is a growing contributor to global sea-level rise1, with recent ice mass loss dominated by surface meltwater runoff2,3. Satellite observations reveal positive trends in GrIS surface melt extent4, but melt variability, intensity and runoff remain uncertain before the satellite era. Here we present the first continuous, multi-century and observationally constrained record of GrIS surface melt intensity and runoff, revealing that the magnitude of recent GrIS melting is exceptional over at least the last 350 years. We develop this record through stratigraphic analysis of central west Greenland ice cores, and demonstrate that measurements of refrozen melt layers in percolation zone ice cores can be used to quantifiably, and reproducibly, reconstruct past melt rates. We show significant (P < 0.01) and spatially extensive correlations between these ice-core-derived melt records and modelled melt rates5,6 and satellite-derived melt duration4 across Greenland more broadly, enabling the reconstruction of past ice-sheet-scale surface melt intensity and runoff. We find that the initiation of increases in GrIS melting closely follow the onset of industrial-era Arctic warming in the mid-1800s, but that the magnitude of GrIS melting has only recently emerged beyond the range of natural variability. Owing to a nonlinear response of surface melting to increasing summer air temperatures, continued atmospheric warming will lead to rapid increases in GrIS runoff and sea-level contributions.

10.
Cryosphere ; 12(12): 3813-3825, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31217911

RESUMEN

Rapid changes in thickness and velocity have been observed at many marine-terminating glaciers in Greenland, impacting the volume of ice they export, or discharge, from the ice sheet. While annual estimates of ice-sheet wide discharge have been previously derived, higher-resolution records are required to fully constrain the temporal response of these glaciers to various climatic and mechanical drivers that vary in sub-annual scales. Here we sample outlet glaciers wider than 1 km (N = 230) to derive the first continuous, ice-sheet wide record of total ice sheet discharge for the 2000-2016 period, resolving a seasonal variability of 6 %. The amplitude of seasonality varies spatially across the ice sheet from 5 % in the southeastern region to 9 % in the northwest region. We analyze seasonal to annual variability in the discharge time series with respect to both modelled meltwater runoff, obtained from RACMO2.3p2, and glacier front position changes over the same period. We find that year-to-year changes in total ice sheet discharge are related to annual front changes (r 2 = 0.59, p = 10-4) and that the annual magnitude of discharge is closely related to cumulative front position changes (r 2 = 0.79), which show a net retreat of > 400 km, or an average retreat of > 2 km at each surveyed glacier. Neither maximum seasonal runoff or annual runoff totals are correlated to annual discharge, which suggests that larger annual quantities of runoff do not relate to increased annual discharge. Discharge and runoff, however, follow similar patterns of seasonal variability with near-coincident periods of acceleration and seasonal maxima. These results suggest that changes in glacier front position drive secular trends in discharge, whereas the impact of runoff is likely limited to the summer months when observed seasonal variations are substantially controlled by the timing of meltwater input.

11.
Proc Natl Acad Sci U S A ; 114(50): E10622-E10631, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29208716

RESUMEN

Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

12.
Geosci Model Dev ; 10(1): 255-270, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29697704

RESUMEN

We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

13.
Geophys Res Lett ; 44(22): 11580-11589, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29398735

RESUMEN

We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific-South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone.

14.
Proc Natl Acad Sci U S A ; 111(52): 18478-83, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512537

RESUMEN

We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt ⋅ y(-1), equivalent to 0.68 mm ⋅ y(-1) sea level rise (SLR) for 2003-2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004-2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers.

15.
Geophys Res Lett ; 41(20): 7209-7216, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25821275

RESUMEN

Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. KEY POINTS: First multi-region seasonal velocity measurements show regional differencesSeasonal velocity fluctuations on most glaciers appear meltwater controlledSeasonal development of efficient subglacial drainage geographically divided.

16.
Proc Natl Acad Sci U S A ; 110(35): 14156-61, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940337

RESUMEN

We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone.

17.
Science ; 340(6134): 852-7, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23687045

RESUMEN

Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world's oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003-2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was -259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise.


Asunto(s)
Cubierta de Hielo , Agua de Mar , Regiones Árticas , Groenlandia
18.
Science ; 338(6111): 1183-9, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23197528

RESUMEN

We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Regiones Antárticas , Sistemas de Información Geográfica , Groenlandia
19.
Ned Tijdschr Geneeskd ; 153: B511, 2009.
Artículo en Holandés | MEDLINE | ID: mdl-20025793

RESUMEN

The first report by the Intergovernmental Panel on Climate Change (IPCC) appeared almost 20 years ago. Environmental contamination has a negative effect on the environment in which we live. However, the public at large is confused about the ins and outs of climate change. Managers, politicians, various kinds of advisors, scientists, so-called experts, sceptics and journalists have all taken it upon themselves to lead the debate. Whose task is it to ensure a sound discussion? Surely it is the IPCC's task. However, most politicians and many journalists, and even many scientists, do not take the trouble to read the entire IPCC report or parts of it. As a consequence, much nonsense is published and broadcast. An effective procedure to deal with the climate problem starts with a fair discussion of the scientific evidence. My advice is: just read the free IPCC report: http://www.ipcc.ch/ and click on 'WG I The Physical Science Basis'.


Asunto(s)
Cambio Climático , Salud Ambiental , Contaminación Ambiental/efectos adversos , Comunicación , Medicina Basada en la Evidencia , Humanos
20.
Science ; 320(5883): 1626-9, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18511656

RESUMEN

Antarctic Ice Sheet elevation changes, which are used to estimate changes in the mass of the interior regions, are caused by variations in the depth of the firn layer. We quantified the effects of temperature and accumulation variability on firn layer thickness by simulating the 1980-2004 Antarctic firn depth variability. For most of Antarctica, the magnitudes of firn depth changes were comparable to those of observed ice sheet elevation changes. The current satellite observational period ( approximately 15 years) is too short to neglect these fluctuations in firn depth when computing recent ice sheet mass changes. The amount of surface lowering in the Amundsen Sea Embayment revealed by satellite radar altimetry (1995-2003) was increased by including firn depth fluctuations, while a large area of the East Antarctic Ice Sheet slowly grew as a result of increased accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...