Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acid Ther ; 33(3): 193-208, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37036788

RESUMEN

In the last two decades, antisense oligonucleotides (AONs) that induce corrective exon skipping have matured as promising therapies aimed at tackling the dystrophin deficiency that underlies the severe and progressive muscle fiber degeneration in Duchenne muscular dystrophy (DMD) patients. Pioneering first generation exon 51 skipping AONs like drisapersen and eteplirsen have more recently been followed up by AONs for exons 53 and 45, with, to date, a total of four exon skipping AON drugs having reached (conditional) regulatory US Food and Drug Administration (FDA) approval for DMD. Nonetheless, considering the limited efficacy of these drugs, there is room for improvement. The aim of this study was to develop more efficient [2'-O-methyl-modified phosphorothioate (2'OMePS) RNA] AONs for DMD exon 51 skipping by implementing precision chemistry as well as identifying a more potent target binding site. More than a hundred AONs were screened in muscle cell cultures, followed by a selective comparison in the hDMD and hDMDdel52/mdx mouse models. Incorporation of 5-methylcytosine and position-specific locked nucleic acids in AONs targeting the drisapersen/eteplirsen binding site resulted in 15-fold higher exon 51 skipping levels compared to drisapersen in hDMDdel52/mdx mice. However, with similarly modified AONs targeting an alternative site in exon 51, 65-fold higher skipping levels were obtained, restoring dystrophin up to 30% of healthy control. Targeting both sites in exon 51 with a single AON further increased exon skipping (100-fold over drisapersen) and dystrophin (up to 40%) levels. These dystrophin levels allowed for normalization of creatine kinase (CK) and lactate dehydrogenase (LDH) levels, and improved motor function in hDMDdel52/mdx mice. As no major safety observation was obtained, the improved therapeutic index of these next generation AONs is encouraging for further (pre)clinical development.


Asunto(s)
Distrofia Muscular de Duchenne , Ratones , Animales , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Ratones Endogámicos mdx , Terapia Genética/métodos , Exones/genética
2.
Nucleic Acid Ther ; 30(1): 50-65, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31821107

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe childhood muscle disease primarily caused by the lack of functional dystrophin at the muscle fiber membranes. Multiple therapeutic approaches are currently in (pre)clinical development, aimed at restoring expression of (truncated) dystrophin. Key questions in this phase relate to route of drug administration, dose regimen, and levels of dystrophin required to improve muscle function. A series of studies applying antisense oligonucleotides (AONs) in the mdx mouse model for DMD has been reported over the last two decades, claiming a variable range of exon skipping and increased dystrophin levels correlated to some functional improvement. The aim of this study was to compare the efficacy of subcutaneous (SC) versus intravenous (IV) dosing routes of an mdx-specific AON at both the molecular and functional level, using state-of-the-art quantitative technologies, including digital droplet polymerase chain reaction, capillary Western immunoassay, magnetic resonance imaging, and automated kinematic analysis. The majority of all readouts we quantified, both molecular and functional, showed that IV dosing of the AON had a more pronounced beneficial effect than SC dosing in mdx mice. Last, but not least, the more quantitative molecular and functional data obtained in this study suggest that low levels of dystrophin protein of at least 2.5% of wild type may already have a beneficial effect on muscle leakiness and may improve motor performance of mdx mice.


Asunto(s)
Exones/efectos de los fármacos , Terapia Genética , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/farmacología , Animales , Modelos Animales de Enfermedad , Exones/genética , Humanos , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Oligonucleótidos Antisentido/genética
3.
FASEB J ; 27(12): 4909-16, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23975932

RESUMEN

Duchenne and Becker muscular dystrophies are caused by out-of-frame and in-frame mutations, respectively, in the dystrophin encoding DMD gene. Molecular therapies targeting the precursor-mRNA are in clinical trials and show promising results. These approaches will depend on the stability and expression levels of dystrophin mRNA in skeletal muscles and heart. We report that the DMD gene is more highly expressed in heart than in skeletal muscles, in mice and humans. The transcript mutated in the mdx mouse model shows a 5' to 3' imbalance compared with that of its wild-type counterpart and reading frame restoration via antisense-mediated exon skipping does not correct this event. We also report significant transcript instability in 22 patients with Becker dystrophy, clarifying the fact that transcript imbalance is not caused by premature nonsense mutations. Finally, we demonstrate that transcript stability, rather than transcriptional rate, is an important determinant of dystrophin protein levels in patients with Becker dystrophy. We suggest that the availability of the complete transcript is a key factor to determine protein abundance and thus will influence the outcome of mRNA-targeting therapies.


Asunto(s)
Distrofina/genética , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Codón sin Sentido , Distrofina/metabolismo , Ectima Contagioso , Exones , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocardio/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...