Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Rep ; 14(1): 14710, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926592

RESUMEN

Heterozygous de novo mutations in the Activity-Dependent Neuroprotective Homeobox (ADNP) gene underlie Helsmoortel-Van der Aa syndrome (HVDAS). Most of these mutations are situated in the last exon and we previously demonstrated escape from nonsense-mediated decay by detecting mutant ADNP mRNA in patient blood. In this study, wild-type and ADNP mutants are investigated at the protein level and therefore optimal detection of the protein is required. Detection of ADNP by means of western blotting has been ambiguous with reported antibodies resulting in non-specific bands without unique ADNP signal. Validation of an N-terminal ADNP antibody (Aviva Systems) using a blocking peptide competition assay allowed to differentiate between specific and non-specific signals in different sample materials, resulting in a unique band signal around 150 kDa for ADNP, above its theoretical molecular weight of 124 kDa. Detection with different C-terminal antibodies confirmed the signals at an observed molecular weight of 150 kDa. Our antibody panel was subsequently tested by immunoblotting, comparing parental and homozygous CRISPR/Cas9 endonuclease-mediated Adnp knockout cell lines and showed disappearance of the 150 kDa signal, indicative for intact ADNP. By means of both a GFPSpark and Flag-tag N-terminally fused to a human ADNP expression vector, we detected wild-type ADNP together with mutant forms after introduction of patient mutations in E. coli expression systems by site-directed mutagenesis. Furthermore, we were also able to visualize endogenous ADNP with our C-terminal antibody panel in heterozygous cell lines carrying ADNP patient mutations, while the truncated ADNP mutants could only be detected with epitope-tag-specific antibodies, suggesting that addition of an epitope-tag possibly helps stabilizing the protein. However, western blotting of patient-derived hiPSCs, immortalized lymphoblastoid cell lines and post-mortem patient brain material failed to detect a native mutant ADNP protein. In addition, an N-terminal immunoprecipitation-competent ADNP antibody enriched truncating mutants in overexpression lysates, whereas implementation of the same method failed to enrich a possible native mutant protein in immortalized patient-derived lymphoblastoid cell lines. This study aims to shape awareness for critical assessment of mutant ADNP protein analysis in Helsmoortel-Van der Aa syndrome.


Asunto(s)
Proteínas de Homeodominio , Proteínas del Tejido Nervioso , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Mutación , Células HEK293 , Trastorno del Espectro Autista , Cardiopatías , Facies , Trastornos del Neurodesarrollo
2.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637827

RESUMEN

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Masculino , Niño , Animales , Ratones , Humanos , Discapacidad Intelectual/genética , Trastorno Autístico/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Genes Mitocondriales , Proteínas de Homeodominio/genética , Cerebelo/metabolismo , Autopsia , Metilación , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Mol Genet Genomic Med ; 9(9): e1768, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34402213

RESUMEN

BACKGROUND: Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. METHODS: We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. RESULTS: Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. CONCLUSION: Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.


Asunto(s)
Consanguinidad , Epilepsia/genética , Genotipo , Microcefalia/genética , Fenotipo , Proteínas de Ciclo Celular/genética , Niño , Epilepsia/epidemiología , Epilepsia/patología , Femenino , Frecuencia de los Genes , Heterogeneidad Genética , Humanos , Incidencia , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Proteínas del Tejido Nervioso/genética
4.
Nat Commun ; 11(1): 4932, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004838

RESUMEN

Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.


Asunto(s)
Predisposición Genética a la Enfermedad , Trastornos del Neurodesarrollo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor de Unión a CCCTC/genética , Estudios de Casos y Controles , Estudios de Cohortes , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Femenino , Estudios de Asociación Genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Canal de Potasio KCNQ3/genética , Masculino , Mutación , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Factores de Transcripción/genética
6.
Eur J Paediatr Neurol ; 24: 100-104, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31926845

RESUMEN

Many pathways have been involved in pathophysiology of the fragile X syndrome, one of the more frequent genetic causes of intellectual disability and autism. This review highlights the recent insights in the role the abnormalities in the GABAergic system play in the disorder. Since the initial observations showed that the expression of specific subunits of the GABA(A) receptor were underexpressed in the fragile X knockout mouse model more than a decade ago, evidence has accumulated that the expression of approximately half of the GABAergic system is compromised in multiple species, including in fragile X patients. Functional consequences of the GABAergic deficiencies could be measured using whole-cell voltage clamp recordings. Pharmalogical treatment with agonist of the receptor was been able to restore several behavioral deficits in the fragile X mouse model, including seizures, marble burying and, in part, prepulse inhibition. Trials in patients with the same agonist have demonstrated encouraging post-hoc results in the most severely affected patients, although no effect could be demonstrated in the patient group as a whole. In conclusion, there can be little doubt that the GABAergic system is compromised in the fragile X syndrome and that these abnormalities contribute to the clinical abnormalities observed. However, at the moment the difference in treatment effectiveness of agonist of the receptor in animal models as opposed to in patients remains unexplained.


Asunto(s)
Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Receptores de GABA/genética , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones
7.
Am J Hum Genet ; 105(3): 493-508, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447100

RESUMEN

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.


Asunto(s)
Senescencia Celular/fisiología , Histonas/fisiología , Aneuploidia , Nucléolo Celular/metabolismo , Niño , Cromatina/metabolismo , Metilación de ADN , Femenino , Histonas/química , Humanos , Lactante , Masculino , Persona de Mediana Edad
8.
J Mol Neurosci ; 64(2): 331, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29353437

RESUMEN

The original version of this article unfortunately contained mistakes.

10.
Am J Med Genet A ; 170(3): 670-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26842493

RESUMEN

We report on 19 individuals with a recurrent de novo c.607C>T mutation in PACS1. This specific mutation gives rise to a recognizable intellectual disability syndrome. There is a distinctive facial appearance (19/19), characterized by full and arched eyebrows, hypertelorism with downslanting palpebral fissures, long eye lashes, ptosis, low set and simple ears, bulbous nasal tip, wide mouth with downturned corners and a thin upper lip with an unusual "wavy" profile, flat philtrum, and diastema of the teeth. Intellectual disability, ranging from mild to moderate, was present in all. Hypotonia is common in infancy (8/19). Seizures are frequent (12/19) and respond well to anticonvulsive medication. Structural malformations are common, including heart (10/19), brain (12/16), eye (10/19), kidney (3/19), and cryptorchidism (6/12 males). Feeding dysfunction is presenting in infancy with failure to thrive (5/19), gastroesophageal reflux (6/19), and gastrostomy tube placement (4/19). There is persistence of oral motor dysfunction. We provide suggestions for clinical work-up and management and hope that the present study will facilitate clinical recognition of further cases.


Asunto(s)
Anomalías Múltiples/genética , Discapacidad Intelectual/genética , Mutación Puntual , Convulsiones/genética , Proteínas de Transporte Vesicular/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/patología , Adolescente , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Facies , Insuficiencia de Crecimiento/diagnóstico , Insuficiencia de Crecimiento/tratamiento farmacológico , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Femenino , Expresión Génica , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/tratamiento farmacológico , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Índice de Severidad de la Enfermedad , Síndrome , Adulto Joven
11.
Eur J Hum Genet ; 24(5): 652-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26306646

RESUMEN

The Koolen-de Vries syndrome (KdVS; OMIM #610443), also known as the 17q21.31 microdeletion syndrome, is a clinically heterogeneous disorder characterised by (neonatal) hypotonia, developmental delay, moderate intellectual disability, and characteristic facial dysmorphism. Expressive language development is particularly impaired compared with receptive language or motor skills. Other frequently reported features include social and friendly behaviour, epilepsy, musculoskeletal anomalies, congenital heart defects, urogenital malformations, and ectodermal anomalies. The syndrome is caused by a truncating variant in the KAT8 regulatory NSL complex unit 1 (KANSL1) gene or by a 17q21.31 microdeletion encompassing KANSL1. Herein we describe a novel cohort of 45 individuals with KdVS of whom 33 have a 17q21.31 microdeletion and 12 a single-nucleotide variant (SNV) in KANSL1 (19 males, 26 females; age range 7 months to 50 years). We provide guidance about the potential pitfalls in the laboratory testing and emphasise the challenges of KANSL1 variant calling and DNA copy number analysis in the complex 17q21.31 region. Moreover, we present detailed phenotypic information, including neuropsychological features, that contribute to the broad phenotypic spectrum of the syndrome. Comparison of the phenotype of both the microdeletion and SNV patients does not show differences of clinical importance, stressing that haploinsufficiency of KANSL1 is sufficient to cause the full KdVS phenotype.


Asunto(s)
Anomalías Múltiples/diagnóstico , Discapacidad Intelectual/diagnóstico , Proteínas Nucleares/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Persona de Mediana Edad
12.
Hum Mutat ; 36(11): 1112, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26457590

RESUMEN

The original article to which this Erratum refers was published in Human Mutation 36(6):593­598(DOI:10.1002/humu22795).The authors realized that a co-author, Nuria C. Bramswig, was left off of the title page of this article at the time of submission. This erratum serves to correct this error by including Dr. Bramswig and Dr. Bramswig's institution in the title page information.The authors regret the error.

13.
Eur J Med Genet ; 58(10): 503-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26327614

RESUMEN

Recurrent rearrangements of chromosome 1q21.1 that occur as a consequence of non-allelic homologous recombination (NAHR) show considerable variability in phenotypic expression and penetrance. Chromosome 1q21.1 deletions (OMIM 612474) have been associated with microcephaly, intellectual disability, autism, schizophrenia, cardiac abnormalities and cataracts. Phenotypic features in individuals with 1q21.1 duplications (OMIM 612475) include macrocephaly, learning difficulties, developmental delay, intellectual disability and mild dysmorphic features. Half of these patients show autistic behavior. For the first time, we describe five patients, including monozygotic twins, with a triplication of the 1q21.1 chromosomal segment. Facial features common to all patients include a high, broad forehead; a flat and broad nasal bridge; long, downslanted palpebral fissures and dysplastic, low-set ears. Likely associated features include macrocephaly and increased weight. We observed that the triplications arose through different mechanisms in the patients: it was de novo in one patient, inherited from a triplication carrier in two cases, while the father of the twins is a 1q21.1 duplication carrier. The de novo triplication contained copies of both maternal alleles, suggesting it was generated by a combination of inter- and intrachromosomal recombination.


Asunto(s)
Cromosomas Humanos Par 1/genética , Anomalías Craneofaciales/genética , Megalencefalia/genética , Sobrepeso/genética , Trisomía , Niño , Preescolar , Anomalías Craneofaciales/diagnóstico , Femenino , Humanos , Lactante , Masculino , Megalencefalia/diagnóstico , Sobrepeso/diagnóstico , Síndrome , Gemelos Monocigóticos/genética
15.
BMC Med Genet ; 16: 51, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26189493

RESUMEN

BACKGROUND: Identification of the first de novo mutation in potassium voltage-gated channel, shal-related subfamily, member 3 (KCND3) in a patient with complex early onset cerebellar ataxia in order to expand the genetic and phenotypic spectrum. METHODS: Whole exome sequencing in a cerebellar ataxia patient and subsequent immunocytochemistry, immunoblotting and patch clamp assays of the channel were performed. RESULTS: A de novo KCND3 mutation (c.877_885dupCGCGTCTTC; p.Arg293_Phe295dup) was found duplicating the RVF motif and thereby adding an extra positive charge to voltage-gated potassium 4.3 (Kv4.3) in the voltage-sensor domain causing a severe shift of the voltage-dependence gating to more depolarized voltages. The patient displayed a severe phenotype with early onset cerebellar ataxia complicated by intellectual disability, epilepsy, attention deficit hyperactivity disorder, strabismus, oral apraxia and joint hyperlaxity. CONCLUSIONS: We identified a de novo KCND3 mutation causing the most marked change in Kv4.3's channel properties reported so far, which correlated with a severe and unique spinocerebellar ataxia (SCA) type 19/22 disease phenotype.


Asunto(s)
Apraxias/genética , Discapacidad Intelectual/genética , Canales de Potasio Shal/genética , Degeneraciones Espinocerebelosas/genética , Secuencia de Bases , Línea Celular Tumoral , Niño , Epilepsia/genética , Marcadores Genéticos , Células HeLa , Humanos , Masculino , Técnicas de Placa-Clamp , Análisis de Secuencia de ADN
16.
PLoS One ; 10(7): e0131486, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26222316

RESUMEN

Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS), a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET) and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome.


Asunto(s)
Encéfalo , Flumazenil/administración & dosificación , Síndrome del Cromosoma X Frágil , Tomografía de Emisión de Positrones , Receptores de GABA-A/metabolismo , Adolescente , Adulto , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Femenino , Síndrome del Cromosoma X Frágil/diagnóstico por imagen , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Radiografía
17.
Hum Mutat ; 36(6): 593-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25824905

RESUMEN

Adams-Oliver syndrome (AOS) is characterized by the association of aplasia cutis congenita with terminal transverse limb defects, often accompanied by additional cardiovascular or neurological features. Both autosomal-dominant and autosomal-recessive disease transmission have been observed, with recent gene discoveries indicating extensive genetic heterogeneity. Mutations of the DOCK6 gene were first described in autosomal-recessive cases of AOS and only five DOCK6-related families have been reported to date. Recently, a second type of autosomal-recessive AOS has been attributed to EOGT mutations in three consanguineous families. Here, we describe the identification of 13 DOCK6 mutations, the majority of which are novel, across 10 unrelated individuals from a large cohort comprising 47 sporadic cases and 31 AOS pedigrees suggestive of autosomal-recessive inheritance. DOCK6 mutations were strongly associated with structural brain abnormalities, ocular anomalies, and intellectual disability, thus suggesting that DOCK6-linked disease represents a variant of AOS with a particularly poor prognosis.


Asunto(s)
Encéfalo/anomalías , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Anomalías del Ojo/genética , Genes Recesivos , Estudios de Asociación Genética , Factores de Intercambio de Guanina Nucleótido/genética , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Mutación , Dermatosis del Cuero Cabelludo/congénito , Adolescente , Encéfalo/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Dermatosis del Cuero Cabelludo/diagnóstico , Dermatosis del Cuero Cabelludo/genética , Tomografía Computarizada por Rayos X , Adulto Joven
18.
Eur J Hum Genet ; 23(6): 803-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25205402

RESUMEN

AUTS2 syndrome is characterized by low birth weight, feeding difficulties, intellectual disability, microcephaly and mild dysmorphic features. All affected individuals thus far were caused by chromosomal rearrangements, variants at the base pair level disrupting AUTS2 have not yet been described. Here we present the full clinical description of two affected men with intragenic AUTS2 variants (one two-base pair deletion in exon 7 and one deletion of exon 6). Both variants are de novo and are predicted to cause a frameshift of the full-length transcript but are unlikely to affect the shorter 3' transcript starting in exon 9. The similarities between the phenotypes of both men are striking and further support that AUTS2 syndrome is a single gene disorder.


Asunto(s)
Eliminación de Gen , Discapacidad Intelectual/genética , Microcefalia/genética , Polimorfismo Genético , Proteínas/genética , Proteínas del Citoesqueleto , Exones , Mutación del Sistema de Lectura , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Fenotipo , Síndrome , Factores de Transcripción , Adulto Joven
19.
Am J Med Genet A ; 164A(12): 3061-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25256099

RESUMEN

Small interstitial deletions affecting chromosome region 3p25.3 have been reported in only five patients so far, four of them with overlapping telomeric microdeletions 3p25.3 and variable features of 3p- syndrome, and one patient with a small proximal microdeletion and a distinct phenotype with intellectual disability (ID) and multiple congenital anomalies. Here we report on three novel patients with overlapping proximal microdeletions 3p25.3 of 1.1-1.5 Mb in size showing a consistent non-3p- phenotype with ID, epilepsy/EEG abnormalities, poor speech, ataxia and stereotypic hand movements. The smallest region of overlap contains two genes encoding sodium- and chloride-dependent GABA transporters which have not been associated with this disease phenotype in humans so far. The protein function, the phenotype in transporter deficient animal models and the effects of specific pharmacological transporter inhibition in mice and humans provide evidence that these GABA transporters are plausible candidates for seizures/EEG abnormalities, ataxia and ID in this novel group of patients. A fourth novel patient deleted for a 3.16 Mb region, both telomeric and centromeric to 3p25.3, confirms that the telomeric segment is critical for the 3p- syndrome phenotype. Finally, a region of 643 kb is suggested to harbor one or more genes causative for polydactyly which is part of the 3p- syndrome.


Asunto(s)
Anomalías Múltiples/genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 3/genética , Epilepsia/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/deficiencia , Discapacidad Intelectual/genética , Anomalías Múltiples/patología , Femenino , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Conducta Estereotipada
20.
Am J Med Genet C Semin Med Genet ; 166C(3): 315-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25169753

RESUMEN

Mutations in ADNP were recently identified as a frequent cause of syndromic autism, characterized by deficits in social communication and interaction and restricted, repetitive behavioral patterns. Based on its functional domains, ADNP is a presumed transcription factor. The gene interacts closely with the SWI/SNF complex by direct and experimentally verified binding of its C-terminus to three of its core components. A detailed and systematic clinical assessment of the symptoms observed in our patients allows a detailed comparison with the symptoms observed in other SWI/SNF disorders. While the mutational mechanism of the first 10 patients identified suggested a gain of function mechanism, an 11th patient reported here is predicted haploinsufficient. The latter observation may raise hope for therapy, as addition of NAP, a neuroprotective octapeptide named after the first three amino acids of the sequence NAPVSPIQ, has been reported by others to ameliorate some of the cognitive abnormalities observed in a knockout mouse model. It is concluded that detailed clinical and molecular studies on larger cohorts of patients are necessary to establish a better insight in the genotype phenotype correlation and in the mutational mechanism.


Asunto(s)
Trastorno Autístico/genética , Proteínas de Homeodominio/genética , Mutación , Proteínas del Tejido Nervioso/genética , Anomalías Múltiples/genética , Animales , Trastorno Autístico/etiología , Preescolar , ADN Helicasas/genética , ADN Helicasas/metabolismo , Cara/anomalías , Deformidades Congénitas de la Mano/genética , Haploinsuficiencia/genética , Humanos , Lactante , Discapacidad Intelectual/genética , Ratones Noqueados , Micrognatismo/genética , Cuello/anomalías , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligopéptidos/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...