Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(14): eadl0389, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569044

RESUMEN

The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.


Asunto(s)
Insulinas , Succinato Deshidrogenasa , Animales , Humanos , Masculino , Ratones , Insulinas/metabolismo , Lípidos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Succinato Deshidrogenasa/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(2): e2204750120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595699

RESUMEN

Exercise is a nonpharmacological intervention that improves health during aging and a valuable tool in the diagnostics of aging-related diseases. In muscle, exercise transiently alters mitochondrial functionality and metabolism. Mitochondrial fission and fusion are critical effectors of mitochondrial plasticity, which allows a fine-tuned regulation of organelle connectiveness, size, and function. Here we have investigated the role of mitochondrial dynamics during exercise in the model organism Caenorhabditis elegans. We show that in body-wall muscle, a single exercise session induces a cycle of mitochondrial fragmentation followed by fusion after a recovery period, and that daily exercise sessions delay the mitochondrial fragmentation and physical fitness decline that occur with aging. Maintenance of proper mitochondrial dynamics is essential for physical fitness, its enhancement by exercise training, and exercise-induced remodeling of the proteome. Surprisingly, among the long-lived genotypes we analyzed (isp-1,nuo-6, daf-2, eat-2, and CA-AAK-2), constitutive activation of AMP-activated protein kinase (AMPK) uniquely preserves physical fitness during aging, a benefit that is abolished by impairment of mitochondrial fission or fusion. AMPK is also required for physical fitness to be enhanced by exercise, with our findings together suggesting that exercise may enhance muscle function through AMPK regulation of mitochondrial dynamics. Our results indicate that mitochondrial connectivity and the mitochondrial dynamics cycle are essential for maintaining physical fitness and exercise responsiveness during aging and suggest that AMPK activation may recapitulate some exercise benefits. Targeting mechanisms to optimize mitochondrial fission and fusion, as well as AMPK activation, may represent promising strategies for promoting muscle function during aging.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Animales , Dinámicas Mitocondriales/fisiología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/fisiología , Caenorhabditis elegans/metabolismo , Ejercicio Físico , Aptitud Física , Músculo Esquelético/metabolismo
3.
Life Sci Alliance ; 3(7)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32499316

RESUMEN

Recent breakthroughs in live-cell imaging have enabled visualization of cristae, making it feasible to investigate the structure-function relationship of cristae in real time. However, quantifying live-cell images of cristae in an unbiased way remains challenging. Here, we present a novel, semi-automated approach to quantify cristae, using the machine-learning Trainable Weka Segmentation tool. Compared with standard techniques, our approach not only avoids the bias associated with manual thresholding but more efficiently segments cristae from Airyscan and structured illumination microscopy images. Using a cardiolipin-deficient cell line, as well as FCCP, we show that our approach is sufficiently sensitive to detect perturbations in cristae density, size, and shape. This approach, moreover, reveals that cristae are not uniformly distributed within the mitochondrion, and sites of mitochondrial fission are localized to areas of decreased cristae density. After a fusion event, individual cristae from the two mitochondria, at the site of fusion, merge into one object with distinct architectural values. Overall, our study shows that machine learning represents a compelling new strategy for quantifying cristae in living cells.


Asunto(s)
Mitocondrias/fisiología , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Línea Celular , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos , Membranas Mitocondriales/fisiología , Membranas Mitocondriales/ultraestructura , Imagen Óptica/métodos
4.
EMBO J ; 38(22): e101056, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31609012

RESUMEN

The mitochondrial membrane potential (ΔΨm ) is the main driver of oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane (IMM), consisting of cristae and inner boundary membranes (IBM), is considered to carry a uniform ΔΨm . However, sequestration of OXPHOS components in cristae membranes necessitates a re-examination of the equipotential representation of the IMM. We developed an approach to monitor ΔΨm at the resolution of individual cristae. We found that the IMM was divided into segments with distinct ΔΨm , corresponding to cristae and IBM. ΔΨm was higher at cristae compared to IBM. Treatment with oligomycin increased, whereas FCCP decreased, ΔΨm heterogeneity along the IMM. Impairment of cristae structure through deletion of MICOS-complex components or Opa1 diminished this intramitochondrial heterogeneity of ΔΨm . Lastly, we determined that different cristae within the individual mitochondrion can have disparate membrane potentials and that interventions causing acute depolarization may affect some cristae while sparing others. Altogether, our data support a new model in which cristae within the same mitochondrion behave as independent bioenergetic units, preventing the failure of specific cristae from spreading dysfunction to the rest.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Mioblastos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Cultivadas , Femenino , Células HeLa , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Mioblastos/citología , Fosforilación Oxidativa
5.
Mol Metab ; 21: 51-67, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30591411

RESUMEN

OBJECTIVE: Mitochondria are organelles primarily responsible for energy production, and recent evidence indicates that alterations in size, shape, location, and quantity occur in response to fluctuations in energy supply and demand. We tested the impact of acute and chronic exercise on mitochondrial dynamics signaling and determined the impact of the mitochondrial fission regulator Dynamin related protein (Drp)1 on exercise performance and muscle adaptations to training. METHODS: Wildtype and muscle-specific Drp1 heterozygote (mDrp1+/-) mice, as well as dysglycemic (DG) and healthy normoglycemic men (control) performed acute and chronic exercise. The Hybrid Mouse Diversity Panel, including 100 murine strains of recombinant inbred mice, was used to identify muscle Dnm1L (encodes Drp1)-gene relationships. RESULTS: Endurance exercise impacted all aspects of the mitochondrial life cycle, i.e. fission-fusion, biogenesis, and mitophagy. Dnm1L gene expression and Drp1Ser616 phosphorylation were markedly increased by acute exercise and declined to baseline during post-exercise recovery. Dnm1L expression was strongly associated with transcripts known to regulate mitochondrial metabolism and adaptations to exercise. Exercise increased the expression of DNM1L in skeletal muscle of healthy control and DG subjects, despite a 15% ↓(P = 0.01) in muscle DNM1L expression in DG at baseline. To interrogate the role of Dnm1L further, we exercise trained male mDrp1+/- mice and found that Drp1 deficiency reduced muscle endurance and running performance, and altered muscle adaptations in response to exercise training. CONCLUSION: Our findings highlight the importance of mitochondrial dynamics, specifically Drp1 signaling, in the regulation of exercise performance and adaptations to endurance exercise training.


Asunto(s)
Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Rendimiento Físico Funcional , Adaptación Fisiológica , Adulto , Anciano , Animales , Glucemia/metabolismo , Dinaminas/genética , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fosforilación , Resistencia Física
6.
Cell Death Dis ; 9(3): 286, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459714

RESUMEN

Mitochondria are cellular organelles with crucial functions in the generation and distribution of ATP, the buffering of cytosolic Ca2+ and the initiation of apoptosis. Compounds that interfere with these functions are termed mitochondrial toxins, many of which are derived from microbes, such as antimycin A, oligomycin A, and ionomycin. Here, we identify the mycotoxin phomoxanthone A (PXA), derived from the endophytic fungus Phomopsis longicolla, as a mitochondrial toxin. We show that PXA elicits a strong release of Ca2+ from the mitochondria but not from the ER. In addition, PXA depolarises the mitochondria similarly to protonophoric uncouplers such as CCCP, yet unlike these, it does not increase but rather inhibits cellular respiration and electron transport chain activity. The respiration-dependent mitochondrial network structure rapidly collapses into fragments upon PXA treatment. Surprisingly, this fragmentation is independent from the canonical mitochondrial fission and fusion mediators DRP1 and OPA1, and exclusively affects the inner mitochondrial membrane, leading to cristae disruption, release of pro-apoptotic proteins, and apoptosis. Taken together, our results suggest that PXA is a mitochondrial toxin with a novel mode of action that might prove a useful tool for the study of mitochondrial ion homoeostasis and membrane dynamics.


Asunto(s)
Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Micotoxinas/toxicidad , Xantonas/toxicidad , Animales , Ascomicetos/metabolismo , Calcio/metabolismo , Línea Celular , Transporte de Electrón/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Micotoxinas/metabolismo , Xantonas/metabolismo
7.
J Biol Chem ; 293(13): 4735-4751, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29378845

RESUMEN

Estrogen receptor α (ERα) action plays an important role in pancreatic ß-cell function and survival; thus, it is considered a potential therapeutic target for the treatment of type 2 diabetes in women. However, the mechanisms underlying the protective effects of ERα remain unclear. Because ERα regulates mitochondrial metabolism in other cell types, we hypothesized that ERα may act to preserve insulin secretion and promote ß-cell survival by regulating mitochondrial-endoplasmic reticulum (EndoRetic) function. We tested this hypothesis using pancreatic islet-specific ERα knockout (PERαKO) mice and Min6 ß-cells in culture with Esr1 knockdown (KD). We found that Esr1-KD promoted reactive oxygen species production that associated with reduced fission/fusion dynamics and impaired mitophagy. Electron microscopy showed mitochondrial enlargement and a pro-fusion phenotype. Mitochondrial cristae and endoplasmic reticulum were dilated in Esr1-KD compared with ERα replete Min6 ß-cells. Increased expression of Oma1 and Chop was paralleled by increased oxygen consumption and apoptosis susceptibility in ERα-KD cells. In contrast, ERα overexpression and ligand activation reduced both Chop and Oma1 expression, likely by ERα binding to consensus estrogen-response element sites in the Oma1 and Chop promoters. Together, our findings suggest that ERα promotes ß-cell survival and insulin secretion through maintenance of mitochondrial fission/fusion-mitophagy dynamics and EndoRetic function, in part by Oma1 and Chop repression.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Receptor alfa de Estrógeno/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Mitofagia , Animales , Supervivencia Celular , Receptor alfa de Estrógeno/genética , Femenino , Insulina/genética , Insulina/metabolismo , Metaloproteasas/biosíntesis , Metaloproteasas/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción CHOP/biosíntesis , Factor de Transcripción CHOP/genética
8.
Genetics ; 207(3): 843-871, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29097398

RESUMEN

Mitochondria are best known for harboring pathways involved in ATP synthesis through the tricarboxylic acid cycle and oxidative phosphorylation. Major advances in understanding these roles were made with Caenorhabditiselegans mutants affecting key components of the metabolic pathways. These mutants have not only helped elucidate some of the intricacies of metabolism pathways, but they have also served as jumping off points for pharmacology, toxicology, and aging studies. The field of mitochondria research has also undergone a renaissance, with the increased appreciation of the role of mitochondria in cell processes other than energy production. Here, we focus on discoveries that were made using C. elegans, with a few excursions into areas that were studied more thoroughly in other organisms, like mitochondrial protein import in yeast. Advances in mitochondrial biogenesis and membrane dynamics were made through the discoveries of novel functions in mitochondrial fission and fusion proteins. Some of these functions were only apparent through the use of diverse model systems, such as C. elegans Studies of stress responses, exemplified by mitophagy and the mitochondrial unfolded protein response, have also benefitted greatly from the use of model organisms. Recent developments include the discoveries in C. elegans of cell autonomous and nonautonomous pathways controlling the mitochondrial unfolded protein response, as well as mechanisms for degradation of paternal mitochondria after fertilization. The evolutionary conservation of many, if not all, of these pathways ensures that results obtained with C. elegans are equally applicable to studies of human mitochondria in health and disease.


Asunto(s)
Mitocondrias/metabolismo , Biogénesis de Organelos , Animales , Ciclo del Ácido Cítrico , Transporte de Electrón , Mitocondrias/genética , Mitocondrias/ultraestructura
10.
EMBO J ; 35(13): 1365-7, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27283747
11.
J Cell Sci ; 128(12): 2236-48, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25956888

RESUMEN

Autocrine VEGF is necessary for endothelial survival, although the cellular mechanisms supporting this function are unknown. Here, we show that--even after full differentiation and maturation--continuous expression of VEGF by endothelial cells is needed to sustain vascular integrity and cellular viability. Depletion of VEGF from the endothelium results in mitochondria fragmentation and suppression of glucose metabolism, leading to increased autophagy that contributes to cell death. Gene-expression profiling showed that endothelial VEGF contributes to the regulation of cell cycle and mitochondrial gene clusters, as well as several--but not all--targets of the transcription factor FOXO1. Indeed, VEGF-deficient endothelium in vitro and in vivo showed increased levels of FOXO1 protein in the nucleus and cytoplasm. Silencing of FOXO1 in VEGF-depleted cells reversed expression profiles of several of the gene clusters that were de-regulated in VEGF knockdown, and rescued both cell death and autophagy phenotypes. Our data suggest that endothelial VEGF maintains vascular homeostasis through regulation of FOXO1 levels, thereby ensuring physiological metabolism and endothelial cell survival.


Asunto(s)
Apoptosis , Comunicación Autocrina , Autofagia , Biomarcadores/metabolismo , Endotelio Vascular/patología , Factores de Transcripción Forkhead/metabolismo , Mitocondrias/patología , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Western Blotting , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Humanos , Hipoxia/fisiopatología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Fosforilación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
12.
Science ; 344(6191): 1510-5, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24970086

RESUMEN

Dynamin superfamily molecular motors use guanosine triphosphate (GTP) as a source of energy for membrane-remodeling events. We found that knockdown of nucleoside diphosphate kinases (NDPKs) NM23-H1/H2, which produce GTP through adenosine triphosphate (ATP)-driven conversion of guanosine diphosphate (GDP), inhibited dynamin-mediated endocytosis. NM23-H1/H2 localized at clathrin-coated pits and interacted with the proline-rich domain of dynamin. In vitro, NM23-H1/H2 were recruited to dynamin-induced tubules, stimulated GTP-loading on dynamin, and triggered fission in the presence of ATP and GDP. NM23-H4, a mitochondria-specific NDPK, colocalized with mitochondrial dynamin-like OPA1 involved in mitochondria inner membrane fusion and increased GTP-loading on OPA1. Like OPA1 loss of function, silencing of NM23-H4 but not NM23-H1/H2 resulted in mitochondrial fragmentation, reflecting fusion defects. Thus, NDPKs interact with and provide GTP to dynamins, allowing these motor proteins to work with high thermodynamic efficiency.


Asunto(s)
Membrana Celular/metabolismo , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endocitosis , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Fusión de Membrana , Mitocondrias/metabolismo , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasa D/metabolismo
13.
J Cell Biol ; 204(7): 1083-6, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24687277

RESUMEN

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex "mitochondrial contact site and cristae organizing system" and its subunits Mic10 to Mic60.


Asunto(s)
Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Subunidades de Proteína/química , Animales , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Terminología como Asunto
14.
Elife ; 3: e01612, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24569479

RESUMEN

Damaged mitochondria can be selectively eliminated by mitophagy. Although two gene products mutated in Parkinson's disease, PINK1, and Parkin have been found to play a central role in triggering mitophagy in mammals, how the pre-autophagosomal isolation membrane selectively and accurately engulfs damaged mitochondria remains unclear. In this study, we demonstrate that TBC1D15, a mitochondrial Rab GTPase-activating protein (Rab-GAP), governs autophagosome biogenesis and morphology downstream of Parkin activation. To constrain autophagosome morphogenesis to that of the cargo, TBC1D15 inhibits Rab7 activity and associates with both the mitochondria through binding Fis1 and the isolation membrane through the interactions with LC3/GABARAP family members. Another TBC family member TBC1D17, also participates in mitophagy and forms homodimers and heterodimers with TBC1D15. These results demonstrate that TBC1D15 and TBC1D17 mediate proper autophagic encapsulation of mitochondria by regulating Rab7 activity at the interface between mitochondria and isolation membranes. DOI: http://dx.doi.org/10.7554/eLife.01612.001.


Asunto(s)
Autofagia , Proteínas Activadoras de GTPasa/metabolismo , Lisosomas/metabolismo , Mitocondrias/enzimología , Mitofagia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Activadoras de GTPasa/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Lisosomas/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Unión Proteica , Multimerización de Proteína , Transducción de Señal , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
15.
Mol Biol Cell ; 25(1): 145-59, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24196833

RESUMEN

Mitochondrial fission is mediated by the dynamin-related protein Drp1 in metazoans. Drp1 is recruited from the cytosol to mitochondria by the mitochondrial outer membrane protein Mff. A second mitochondrial outer membrane protein, named Fis1, was previously proposed as recruitment factor, but Fis1(-/-) cells have mild or no mitochondrial fission defects. Here we show that Fis1 is nevertheless part of the mitochondrial fission complex in metazoan cells. During the fission cycle, Drp1 first binds to Mff on the surface of mitochondria, followed by entry into a complex that includes Fis1 and endoplasmic reticulum (ER) proteins at the ER-mitochondrial interface. Mutations in Fis1 do not normally affect fission, but they can disrupt downstream degradation events when specific mitochondrial toxins are used to induce fission. The disruptions caused by mutations in Fis1 lead to an accumulation of large LC3 aggregates. We conclude that Fis1 can act in sequence with Mff at the ER-mitochondrial interface to couple stress-induced mitochondrial fission with downstream degradation processes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/genética , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Células HCT116 , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Músculos/citología , Mutación Missense , Proteolisis
16.
FASEB J ; 28(3): 1113-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24297697

RESUMEN

Trichomonas vaginalis is a highly divergent, unicellular eukaryote of the phylum Metamonada, class Parabasalia, and the source of a common sexually transmitted infection. This parasite lacks mitochondria, but harbors an evolutionarily related organelle, the hydrogenosome. We explored the role of dynamin-related proteins (DRPs) in the division of the hydrogenosome. Eight DRP homologues [T. vaginalis DRPs (TvDRPs)], which can be grouped into 3 subclasses, are present in T. vaginalis. We examined 5 TvDRPs that are representative of each subclass, by introducing dominant negative mutations analogous to those known to interfere with mitochondrial division in yeast, worms, and mammals. Microscopic and cell fractionation analyses of parasites expressing one of the mutated TvDRPs (TVAG_350040) demonstrated that this protein localizes to hydrogenosomes. Moreover, these organelles were found to be increased in size and reduced in number in cells expressing this dominant negative protein, relative to parasites expressing the corresponding wild-type TvDRP, the other 4 mutant TvDRPs, or an empty vector control. Our data indicate a role for a TvDRP in the fission of T. vaginalis hydrogenosomes, similar to that described for peroxisomes and mitochondria. These findings reveal a conservation of core components involved in the division of diverse eukaryotic organelles across broad phylogenetic distances.


Asunto(s)
Dinaminas/fisiología , Orgánulos/fisiología , Proteínas Protozoarias/fisiología , Trichomonas vaginalis/citología , Secuencia de Aminoácidos , Animales , Dinaminas/química , Humanos , Microscopía Electrónica , Datos de Secuencia Molecular , Proteínas Protozoarias/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Trichomonas vaginalis/ultraestructura
17.
Artículo en Inglés | MEDLINE | ID: mdl-23732471

RESUMEN

Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a healthy mitochondrial network. In addition, mitochondrial fission and fusion play prominent roles in disease-related processes such as apoptosis and mitophagy. Three members of the Dynamin family are key components of the fission and fusion machineries. Their functions are controlled by different sets of adaptor proteins on the surface of mitochondria and by a range of regulatory processes. Here, we review what is known about these proteins and the processes that regulate their actions.


Asunto(s)
Apoptosis/fisiología , Evolución Biológica , Citoesqueleto/fisiología , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Modelos Biológicos , Fosforilación , Ubiquitinación
18.
Science ; 337(6098): 1062-5, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22936770

RESUMEN

Mitochondrial fission and fusion play critical roles in maintaining functional mitochondria when cells experience metabolic or environmental stresses. Fusion helps mitigate stress by mixing the contents of partially damaged mitochondria as a form of complementation. Fission is needed to create new mitochondria, but it also contributes to quality control by enabling the removal of damaged mitochondria and can facilitate apoptosis during high levels of cellular stress. Disruptions in these processes affect normal development, and they have been implicated in neurodegenerative diseases, such as Parkinson's.


Asunto(s)
Fusión de Membrana , Mitocondrias/fisiología , Estrés Fisiológico , Animales , Autofagia , ADN Mitocondrial/genética , Humanos , Ratones , Mitocondrias/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo
19.
Methods Cell Biol ; 107: 239-63, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22226526

RESUMEN

This chapter describes methods for studying membrane traffic and organelle biogenesis in Caenorhabditis elegans. These processes have traditionally been studied with yeast or mammalian cells, but C. elegans is emerging as an attractive alternative model system for cell biologists. C. elegans is well known for the ease of manipulation through classic and molecular genetic techniques. In addition, C. elegans is transparent, so fluorescent proteins can be observed in live animals. These properties have aided the development of functional assays for tracking cell biological processes in situ. Localization results obtained with fluorescent proteins can be validated with immunofluorescence and with biochemical methods, such as subcellular fractionation, adapted from methods developed for other organisms. C. elegans thus combines powerful genetics with a range of cell biological techniques to study subcellular processes in a tractable multicellular organism.


Asunto(s)
Caenorhabditis elegans/fisiología , Membrana Celular/ultraestructura , Lisosomas/ultraestructura , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Oocitos/ultraestructura , Animales , Transporte Biológico , Biomarcadores/metabolismo , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Extractos Celulares/química , Membrana Celular/metabolismo , Endocitosis , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Lisosomas/metabolismo , Mitocondrias/metabolismo , Oocitos/metabolismo , Fotoblanqueo
20.
Mol Biol Cell ; 22(6): 831-41, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21248201

RESUMEN

Three proteins with similar effects on mitochondrial morphology were identified in an RNA interference (RNAi) screen for mitochondrial abnormalities in Caenorhabditis elegans. One of these is the novel mitochondrial outer membrane protein MOMA-1. The second is the CHCHD3 homologue, CHCH-3, a small intermembrane space protein that may act as a chaperone. The third is a mitofilin homologue, IMMT-1. Mitofilins are inner membrane proteins that control the shapes of cristae. RNAi or mutations in each of these genes change the relatively constant diameters of mitochondria into highly variable diameters, ranging from thin tubes to localized swellings. Neither growth nor brood size of the moma-1, chch-3, or immt-1 single mutants is affected, suggesting that their metabolic functions are normal. However, growth of moma-1 or immt-1 mutants on chch-3(RNAi) leads to withered gonads, a lack of mitochondrial staining, and a dramatic reduction in fecundity, while moma-1; immt-1 double mutants are indistinguishable from single mutants. Mutations in moma-1 and immt-1 also have similar effects on cristae morphology. We conclude that MOMA-1 and IMMT-1 act in the same pathway. It is likely that the observed effects on mitochondrial diameter are an indirect effect of disrupting cristae morphology.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Mitocondrias/patología , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Músculos/citología , Músculos/metabolismo , Mutación , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...