Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Pflugers Arch ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772920

RESUMEN

Phosphate homeostasis is vital for many biological processes and disruptions in circulating levels can be detrimental. While the mechanisms behind FGF23 regulation have been regularly studied, the role of extracellular phosphate sensing and its impact on fibroblast growth factor 23 (FGF23) expression remains unclear. This study aimed to investigate the involvement of reactive oxygen species (ROS), silent information regulator 1 (SIRT1), and Hairy and Enhancer of Split-1 (HES1) in regulating FGF23 in FGF23 expressing MC3T3-E1 cells. MC3T3-E1 cells treated with ß-glycerophosphate (BGP) resulted in increased Fgf23 expression. Inhibition of ROS formation by inhibition of NADPH oxidase, which is essential for ROS production, did not affect this response to BGP, suggesting ROS is not involved in this process. Moreover, treatment with tert-butyl hydroperoxide (TBHP), a ROS-inducing agent, did not increase Fgf23 expression. This suggests that ROS machinery is not involved in FGF23 stimulation as previously suggested. Nonetheless, inhibition of SIRT1 using Ex527 eliminated the Fgf23 response to BGP, indicating its involvement in FGF23 regulation after BGP treatment. Indeed, activation of SIRT1 using SRT1720 increased Fgf23 expression. Moreover, transcription factor Hes1 was upregulated by BGP treatment, which was diminished when cells were treated with Ex527 implying it is also regulated through SIRT1. These findings suggest the existence of an upstream SIRT1-HES1 axis in the regulation of FGF23 by phosphate, though we were unable to find a role for ROS in this process. Further research should provide insights into phosphate homeostasis and potential therapeutic targets for phosphate-related disorders.

2.
Bone Rep ; 21: 101757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577251

RESUMEN

Approximately half of bone fractures that do not heal properly (non-union) can be accounted to insufficient angiogenesis. The processes of angiogenesis and osteogenesis are spatiotemporally regulated in the complex process of fracture healing that requires a substantial amount of energy. It is thought that a metabolic coupling between angiogenesis and osteogenesis is essential for successful healing. However, how this coupling is achieved remains to be largely elucidated. Here, we will discuss the most recent evidence from literature pointing towards a metabolic coupling between angiogenesis and osteogenesis. We will describe the metabolic profiles of the cell types involved during fracture healing as well as secreted products in the bone microenvironment (such as lactate and nitric oxide) as possible key players in this metabolic crosstalk.

3.
Bone ; 181: 117043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341164

RESUMEN

Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.


Asunto(s)
Osteogénesis , Factores de Transcripción , Osteogénesis/genética , Factores de Transcripción/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Diferenciación Celular/genética , Epigénesis Genética , Osteoblastos/metabolismo , Transferasas/genética , Transferasas/metabolismo
4.
Bone ; 180: 116998, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38184100

RESUMEN

Osteon morphology provides valuable information about the interplay between different processes involved in bone remodelling. The correct quantitative interpretation of these morphological features is challenging due to the complexity of interactions between osteoblast behaviour, and the evolving geometry of cortical pores during pore closing. We present a combined experimental and mathematical modelling study to provide insights into bone formation mechanisms during cortical bone remodelling based on histological cross-sections of quiescent human osteons and hypothesis-testing analyses. We introduce wall thickness asymmetry as a measure of the local asymmetry of bone formation within an osteon and examine the frequency distribution of wall thickness asymmetry in cortical osteons from human iliac crest bone samples from women 16-78 years old. Our measurements show that most osteons possess some degree of asymmetry, and that the average degree of osteon asymmetry in cortical bone evolves with age. We then propose a comprehensive mathematical model of cortical pore filling that includes osteoblast secretory activity, osteoblast elimination, osteoblast embedment as osteocytes, and osteoblast crowding and redistribution along the bone surface. The mathematical model is first calibrated to symmetric osteon data, and then used to test three mechanisms of asymmetric wall formation against osteon data: (i) delays in the onset of infilling around the cement line; (ii) heterogeneous osteoblastogenesis around the bone perimeter; and (iii) heterogeneous osteoblast secretory rate around the bone perimeter. Our results suggest that wall thickness asymmetry due to off-centred Haversian pores within osteons, and that nonuniform lamellar thicknesses within osteons are important morphological features that can indicate the prevalence of specific asymmetry-generating mechanisms. This has significant implications for the study of disruptions of bone formation as it could indicate what biological bone formation processes may become disrupted with age or disease.


Asunto(s)
Osteón , Osteoblastos , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Osteón/anatomía & histología , Huesos , Osteocitos , Hueso Cortical
5.
Eur J Endocrinol ; 189(4): 448-459, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37796032

RESUMEN

Fibroblast growth factor 23 (FGF23) is produced and secreted by osteocytes and is essential for maintaining phosphate homeostasis. One of the main regulators of FGF23, 1,25-dihydroxyvitamin D (1,25(OH)2D3), is primarily synthesized in the kidney from 25-hydroxyvitamin D (25(OH)D) by 1α-hydroxylase (encoded by CYP27B1). Hitherto, it is unclear whether osteocytes can convert 25(OH)D and thereby allow for 1,25(OH)2D3 to induce FGF23 production and secretion locally. Here, we differentiated MC3T3-E1 cells toward osteocyte-like cells expressing and secreting FGF23. Treatment with 10-6 M 25(OH)D resulted in conversion of 25(OH)D to 150 pmol/L 1,25(OH)2D3 and increased FGF23 expression and secretion, but the converted amount of 1,25(OH)2D3 was insufficient to trigger an FGF23 response, so the effect on FGF23 was most likely directly caused by 25(OH)D. Interestingly, combining phosphate with 25(OH)D resulted in a synergistic increase in FGF23 expression and secretion, likely due to activation of additional signaling pathways by phosphate. Blockage of the vitamin D receptor (VDR) only partially abolished the effects of 25(OH)D or 25(OH)D combined with phosphate on Fgf23, while completely inhibiting the upregulation of cytochrome P450 family 24 subfamily A member 1 (Cyp24a1), encoding for 24-hydroxylase. RNA sequencing and in silico analyses showed that this could potentially be mediated by the nuclear receptors Retinoic Acid Receptor ß (RARB) and Estrogen Receptor 2 (ESR2). Taken together, we demonstrate that osteocytes are able to convert 25(OH)D to 1,25(OH)2D3, but this is insufficient for FGF23 activation, implicating a direct effect of 25(OH)D in the regulation of FGF23, which occurs at least partially independent from its cognate VDR. Moreover, phosphate and 25(OH)D synergistically increase expression and secretion of FGF23, which warrants investigating consequences in patients receiving a combination of vitamin D analogues and phosphate supplements. These observations help us to further understand the complex relations between phosphate, vitamin D, and FGF23.


Asunto(s)
Calcitriol , Osteocitos , Humanos , Calcifediol , Calcitriol/farmacología , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Oxigenasas de Función Mixta , Osteocitos/metabolismo , Fosfatos , Receptores de Calcitriol/genética , Vitamina D/farmacología , Animales , Ratones
6.
JBMR Plus ; 7(10): e10790, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37808399

RESUMEN

Fibroblast growth factor (FGF)23 is one of the major regulators of phosphate homeostasis. Hypophosphatemia can lead to muscle weakness, fatigue, and osteomalacia. In the setting of hypophosphatemia, serum FGF23 can be measured to differentiate between FGF23-mediated and non-FGF23-mediated renal phosphate wasting. C-terminal FGF23 (cFGF23) assays detect both cFGF23 and intact FGF23 (iFGF23). Circulating FGF23 is regulated by 1.25-dihydroxy-vitamin D, parathyroid hormone (PTH), serum phosphate, and serum calcium but also by, for example, iron status, inflammation, erythropoietin, and hypoxia-inducible-factor-1-α. We present the case of a 48-year-old woman with unexplained mild hypophosphatemia, very high cFGF23, and normal iFGF23. The patient proved to have an iron deficiency. Iron deficiency alters the iFGF23-to-cFGF23 ratio. After initiation of iron treatment, cFGF23 strongly decreased. This case report illustrates the limitation of cFGF23 assays and urges clinicians to be aware that cFGF23 concentrations do not necessarily reflect iFGF23 concentrations and that alternative causes for its elevation should be considered (eg, iron deficiency). © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

7.
Cell Mol Life Sci ; 80(9): 277, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668682

RESUMEN

BACKGROUND: The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS: TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS: Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS: Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.


Asunto(s)
Adipogénesis , Osteogénesis , Tensinas , Humanos , Actinas , Adipogénesis/genética , Diferenciación Celular , Osteogénesis/genética , Tensinas/genética
8.
Bone Rep ; 19: 101704, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37593409

RESUMEN

Osteogenic differentiation of mesenchymal cells is controlled by epigenetic enzymes that regulate post-translational modifications of histones. Compared to acetyl or methyltransferases, the physiological functions of protein arginine methyltransferases (PRMTs) in osteoblast differentiation remain minimally understood. Therefore, we surveyed the expression and function of all nine mammalian PRMT members during osteoblast differentiation. RNA-seq gene expression profiling shows that Prmt1, Prmt4/Carm1 and Prmt5 represent the most prominently expressed PRMT subtypes in mouse calvarial bone and MC3T3 osteoblasts as well as human musculoskeletal tissues and mesenchymal stromal cells (MSCs). Based on effects of siRNA depletion, it appears that PRMT members have different functional effects: (i) loss of Prmt1 stimulates and (ii) loss of Prmt5 decreases calcium deposition of mouse MC3T3 osteoblasts, while (iii) loss of Carm1 is inconsequential for calcium deposition. Decreased Prmt5 suppresses expression of multiple genes involved in mineralization (e.g., Alpl, Ibsp, Phospho1) consistent with a positive role in osteogenesis. Depletion of Prmt1, Carm1 and Prmt5 has intricate but modest time-dependent effects on the expression of a panel of osteoblast differentiation and proliferation markers but does not change mRNA levels for select epigenetic regulators (e.g., Ezh1, Ezh2, Brd2 and Brd4). Treatment with the Class I PRMT inhibitor GSK715 enhances extracellular matrix mineralization of MC3T3 cells, while blocking formation of H3R17me2a but not H4R3me2a marks. In sum, Prmt1, Carm1 and Prmt5 have distinct biological roles during osteoblast differentiation, and different types histone H3 and H4 arginine methylation may contribute to the chromatin landscape during osteoblast differentiation.

9.
Bone ; 176: 116866, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37558192

RESUMEN

Osteoblast differentiation is epigenetically suppressed by the H3K27 methyltransferase EZH2, and induced by the morphogen BMP2 and transcription factor RUNX2. These factors also regulate distinct G protein coupled receptors (GPRCs; e.g., PTH1R, GPR30/GPER1). Because GPRCs transduce many physiological stimuli, we examined whether BMP2 or EZH2 inhibition (i.e., GSK126) regulates other GPRC genes in osteoblasts. RNA-seq screening of >400 mouse GPRC-related genes showed that many GPRCs are downregulated during osteogenic differentiation. The orphan receptor GPRC5C, along with a small subset of other GPRCs, is induced by BMP2 or GSK126 during Vitamin C dependent osteoblast differentiation, but not by all-trans retinoic acid. ChIP-seq analysis revealed that GSK126 reduces H3K27me3 levels at the GPRC5C gene locus in differentiating MC3T3-E1 osteoblasts, consistent with enhanced GPRC5C mRNA expression. Loss of function analyses revealed that shRNA-mediated depletion of GPRC5C decreases expression of bone markers (e.g., BGLAP and IBSP) and mineral deposition in response to BMP2 or GSK126. GPRC5C mRNA was found to be reduced in the osteopenic bones of KLF10 null mice which have compromised BMP2 signaling. GPRC5C mRNA is induced by the bone-anabolic activity of 17ß-estradiol in trabecular but not cortical bone following ovariectomy. Collectively, these findings suggest that GPRC5C protein is a key node in a pro-osteogenic axis that is normally suppressed by EZH2-mediated H3K27me3 marks and induced during osteoblast differentiation by GSK126, BMP2, and/or 17ß-estradiol. Because GPRC5C protein is an understudied orphan receptor required for osteoblast differentiation, identification of ligands that induce GPRC5C signaling may support therapeutic strategies to mitigate bone-related disorders.


Asunto(s)
Histonas , Osteogénesis , Animales , Femenino , Ratones , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Estradiol , Histonas/metabolismo , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , ARN Mensajero/metabolismo
10.
Front Endocrinol (Lausanne) ; 14: 1137573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455927

RESUMEN

Bi-allelic variants in ASCC1 cause the ultrarare bone fragility disorder "spinal muscular atrophy with congenital bone fractures-2" (SMABF2). However, the mechanism by which ASCC1 dysfunction leads to this musculoskeletal condition and the nature of the associated bone defect are poorly understood. By exome sequencing, we identified a novel homozygous deletion in ASCC1 in a female infant. She was born with severe muscular hypotonia, inability to breathe and swallow, and virtual absence of spontaneous movements; showed progressive brain atrophy, gracile long bones, very slender ribs, and a femur fracture; and died from respiratory failure aged 3 months. A transiliac bone sample taken postmortem revealed a distinct microstructural bone phenotype with low trabecular bone volume, low bone remodeling, disordered collagen organization, and an abnormally high bone marrow adiposity. Proteomics, RNA sequencing, and qPCR in patient-derived skin fibroblasts confirmed that ASCC1 was hardly expressed on protein and RNA levels compared with healthy controls. Furthermore, we demonstrate that mutated ASCC1 is associated with a downregulation of RUNX2, the master regulator of osteoblastogenesis, and SERPINF1, which is involved in osteoblast and adipocyte differentiation. It also exerts an inhibitory effect on TGF-ß/SMAD signaling, which is important for bone development. Additionally, knockdown of ASCC1 in human mesenchymal stromal cells (hMSCs) suppressed their differentiation capacity into osteoblasts while increasing their differentiation into adipocytes. This resulted in reduced mineralization and elevated formation of lipid droplets. These findings shed light onto the pathophysiologic mechanisms underlying SMABF2 and assign a new biological role to ASCC1 acting as an important pro-osteoblastogenic and anti-adipogenic regulator.


Asunto(s)
Adipogénesis , Proteínas , Lactante , Humanos , Femenino , Homocigoto , Eliminación de Secuencia , Diferenciación Celular , Proteínas/genética , Proteínas Portadoras/genética
12.
Sci Rep ; 13(1): 8310, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221192

RESUMEN

Sex differences in serum phosphate and calcium have been reported but the exact nature and underlying regulatory mechanisms remain unclear. We aimed to compare calcium and phosphate concentrations between sexes, and explore potential covariates to elucidate underlying mechanisms of sex differences in a prospective, population-based cohort study. Pooled data of subjects > 45 years from three independent cohorts of the Rotterdam Study (RS) were used: RS-I-3 (n = 3623), RS-II-1 (n = 2394), RS-III-1 (n = 3241), with separate analyses from an additional time point of the first cohort RS-I-1 (n = 2688). Compared to men, women had significantly higher total serum calcium and phosphate concentrations which was not explained by BMI, kidney function nor smoking. Adjustment for serum estradiol diminished sex differences in serum calcium while adjustment for serum testosterone diminished sex differences in serum phosphate. Adjustment for vitamin D and alkaline phosphatase did not change the association between sex and calcium or phosphate in RS-I-1. In the sex-combined group, both serum calcium and phosphate decreased with age with a significant interaction for sex differences for serum calcium but not phosphate. In sex-stratified analyses, serum estradiol but not testosterone was inversely associated with serum calcium in both sexes. Serum estradiol was inversely associated with serum phosphate in both sexes to a similar degree, while serum testosterone was inversely associated with serum phosphate in both sexes with an apparent stronger effect in men than in women. Premenopausal women had lower serum phosphate compared to postmenopausal women. Serum testosterone was inversely associated with serum phosphate in postmenopausal women only. In conclusion, women > 45 years have higher serum calcium and phosphate concentrations compared to men of similar age, not explained by vitamin D or alkaline phosphatase concentrations. Serum estradiol but not testosterone was inversely associated with serum calcium while serum testosterone was inversely associated with serum phosphate in both sexes. Serum testosterone may in part explain sex differences in serum phosphate while estradiol could partly explain sex differences in serum calcium.


Asunto(s)
Calcio , Caracteres Sexuales , Femenino , Humanos , Masculino , Fosfatos , Fosfatasa Alcalina , Estudios de Cohortes , Estudios Prospectivos , Calcio de la Dieta , Vitaminas , Vitamina D , Colorantes , Estradiol , Testosterona
13.
Stem Cell Res Ther ; 14(1): 126, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170285

RESUMEN

BACKGROUND: Recent evidence suggests that accumulation of marrow adipose tissue induced by aberrant lineage allocation of bone marrow-derived mesenchymal stromal cells (BMSCs) contributes to the pathophysiologic processes of osteoporosis. Although master regulators of lineage commitment have been well documented, molecular switches between osteogenesis and adipogenesis are largely unknown. METHODS: HSPB7 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of HSPB7 and its deletion constructs were used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining. ALP activity, calcium assay, Alizarin Red S staining and Oil Red O staining were performed in vitro during osteoblast or adipocyte differentiation. SB431542 and Activin A antibody were used to identify the mechanism of Activin A in the regulation of osteogenic differentiation in BMSCs. RESULTS: In this study, we identified HSPB7 capable of oppositely regulating osteogenic and adipogenic differentiation of BMSCs. HSPB7 silencing promoted adipogenesis while reducing osteogenic differentiation and mineralization. Conversely, overexpression of HSPB7 strongly enhanced osteogenesis, but no effect was observed on adipogenic differentiation. Deletion of the N-terminal or C-terminal domain of HSPB7 led to decreased osteoblastic potency and mineralization. Mechanistically, our data showed that Activin A is a downstream target participating in HSPB7 knockdown-mediated osteogenic inhibition. CONCLUSIONS: Our findings suggest that HSPB7 plays a positive role in driving osteoblastic differentiation, and with the capability in maintaining the osteo-adipogenesis balance. It holds great promise as a potential therapeutic target in the treatment of bone metabolic diseases.


Asunto(s)
Adipogénesis , Células Madre Mesenquimatosas , Humanos , Osteogénesis , Proteínas de Choque Térmico HSP27/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas
14.
J Clin Endocrinol Metab ; 108(9): e754-e768, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36916904

RESUMEN

CONTEXT: Kenny-Caffey syndrome (KCS) is a rare hereditary disorder characterized by short stature, hypoparathyroidism, and electrolyte disturbances. KCS1 and KCS2 are caused by pathogenic variants in TBCE and FAM111A, respectively. Clinically the phenotypes are difficult to distinguish. OBJECTIVE: The objective was to determine and expand the phenotypic spectrum of KCS1 and KCS2 in order to anticipate complications that may arise in these disorders. METHODS: We clinically and genetically analyzed 10 KCS2 patients from 7 families. Because we found unusual phenotypes in our cohort, we performed a systematic review of genetically confirmed KCS cases using PubMed and Scopus. Evaluation by 3 researchers led to the inclusion of 26 papers for KCS1 and 16 for KCS2, totaling 205 patients. Data were extracted following the Cochrane guidelines and assessed by 2 independent researchers. RESULTS: Several patients in our KCS2 cohort presented with intellectual disability (3/10) and chronic kidney disease (6/10), which are not considered common findings in KCS2. Systematic review of all reported KCS cases showed that the phenotypes of KCS1 and KCS2 overlap for postnatal growth retardation (KCS1: 52/52, KCS2: 23/23), low parathyroid hormone levels (121/121, 16/20), electrolyte disturbances (139/139, 24/27), dental abnormalities (47/50, 15/16), ocular abnormalities (57/60, 22/23), and seizures/spasms (103/115, 13/16). Symptoms more prevalent in KCS1 included intellectual disability (74/80, 5/24), whereas in KCS2 bone cortical thickening (1/18, 16/20) and medullary stenosis (7/46, 27/28) were more common. CONCLUSION: Our case series established chronic kidney disease as a new feature of KCS2. In the literature, we found substantial overlap in the phenotypic spectra of KCS1 and KCS2, but identified intellectual disability and the abnormal bone phenotype as the most distinguishing features.


Asunto(s)
Hiperostosis Cortical Congénita , Hipoparatiroidismo , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Hiperostosis Cortical Congénita/genética , Fenotipo , Electrólitos , Hipoparatiroidismo/genética
16.
J Cell Physiol ; 238(2): 379-392, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36538650

RESUMEN

Arboviruses target bone forming osteoblasts and perturb bone remodeling via paracrine factors. We previously reported that Zika virus (ZIKV) infection of early-stage human mesenchymal stromal cells (MSCs) inhibited the osteogenic lineage commitment of MSCs. To understand the physiological interplay between bone development and ZIKV pathogenesis, we employed a primary in vitro model to examine the biological responses of MSCs to ZIKV infection at different stages of osteogenesis. Precommitted MSCs were infected at the late stage of osteogenic stimulation (Day 7) with ZIKV (multiplicity of infection of 5). We observe that MSCs infected at the late stage of differentiation are highly susceptible to ZIKV infection similar to previous observations with early stage infected MSCs (Day 0). However, in contrast to ZIKV infection at the early stage of differentiation, infection at a later stage significantly elevates the key osteogenic markers and calcium content. Comparative RNA sequencing (RNA-seq) of early and late stage infected MSCs reveals that ZIKV infection alters the mRNA transcriptome during osteogenic induction of MSCs (1251 genes). ZIKV infection provokes a robust antiviral response at both stages of osteogenic differentiation as reflected by the upregulation of interferon responsive genes (n > 140). ZIKV infection enhances the expression of immune-related genes in early stage MSCs while increasing cell cycle genes in late stage MSCs. Remarkably, ZIKA infection in early stage MSCs also activates lipid metabolism-related pathways. In conclusion, ZIKV infection has differentiation stage-dependent effects on MSCs and this mechanistic understanding may permit the development of new therapeutic or preventative measures for bone-related effects of ZIKV infection.


Asunto(s)
Células Madre Mesenquimatosas , Infección por el Virus Zika , Virus Zika , Humanos , Osteogénesis , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas
17.
Gene ; 851: 146928, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36191822

RESUMEN

Bone formation is controlled by histone modifying enzymes that regulate post-translational modifications on nucleosomal histone proteins and control accessibility of transcription factors to gene promoters required for osteogenesis. Enhancer of Zeste homolog 2 (EZH2/Ezh2), a histone H3 lysine 27 (H3K27) methyl transferase, is a suppressor of osteoblast differentiation. Ezh2 is regulated by SET and MYND domain-containing protein 2 (SMYD2/Smyd2), a lysine methyltransferase that modifies both histone and non-histone proteins. Here, we examined whether Smyd2 modulates Ezh2 suppression of osteoblast differentiation. Musculoskeletal RNA-seq data show that SMYD2/Smyd2 is the most highly expressed SMYD/Smyd member in human bone tissues and mouse osteoblasts. Smyd2 loss of function analysis in mouse MC3T3 osteoblasts using siRNA depletion enhances proliferation and calcium deposition. Loss of Smyd2 protein does not affect alkaline phosphatase activity nor does it result in a unified expression response for standard osteoblast-related mRNA markers (e.g., Bglap, Ibsp, Spp1, Sp7), indicating that Smyd2 does not directly control osteoblast differentiation. Smyd2 protein depletion enhances levels of the osteo-suppressive Ezh2 protein and H3K27 trimethylation (H3K27me3), as expected from increased cell proliferation, while elevating the osteo-inductive Runx2 protein. Combined siRNA depletion of both Smyd2 and Ezh2 protein is more effective in promoting calcium deposition when compared to loss of either protein. Collectively, our results indicate that Smyd2 inhibits proliferation and indirectly the subsequent mineral deposition by osteoblasts. Mechanistically, Smyd2 represents a functional epigenetic regulator that operates in parallel to the suppressive effects of Ezh2 and H3K27 trimethylation on osteoblast differentiation.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Lisina , Ratones , Animales , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , ARN Interferente Pequeño/metabolismo , Calcio/metabolismo , Dominios MYND , Osteoblastos/metabolismo , Histonas/metabolismo , Proliferación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
18.
BMJ Open ; 12(11): e064779, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36375984

RESUMEN

INTRODUCTION: The incidence of degenerative disorders, including osteoarthritis (OA), increases rapidly in women after menopause. However, the influence of the menopause is still insufficiently investigated due to the slowness of menopausal transition. In this study, a novel human model is used in which it is expected that menopausal-related changes will occur faster. This is the Females discontinuing Oral Contraceptives Use at Menopausal age model. The ultimate aim is to link these changes to OA and other degenerative disorders, including cardiovascular diseases, diabetes, osteoporosis and tendinopathies. METHODS AND ANALYSIS: This is a pilot observational prospective cohort study with 2 years of follow-up. Fifty women aged 50-60 who use oral contraceptive (OC) and have the intention to stop are included. Measurements are performed once before stopping OC, and four times thereafter at 6 weeks, 6 months, 1 year and 2 years. At every time point, a questionnaire is filled in and a sample of blood is drawn. At the first and final time points, a physical examination, hand radiographs and a MRI scan of one knee are performed. The primary OA outcome is progression of the MRI Osteoarthritis Knee Score. Secondary OA outcomes are the development of clinical knee and hand OA, development of knee OA according to the MRI definition, and progression of radiographic features for hand OA. Principal component analysis will be used to assess which changes occur after stopping OC. Univariate and multivariate generalised estimating equation models will be used to test for associations between these components and OA. ETHICS AND DISSEMINATION: The study has been approved by the Medical Ethics Committee of the Erasmus MC University Medical Center Rotterdam (MEC-2019-0592). All participants must give informed consent before data collection. Results will be disseminated in national and international journals. TRIAL REGISTRATION NUMBER: NL70796.078.19.


Asunto(s)
Osteoartritis de la Rodilla , Femenino , Humanos , Articulación de la Rodilla , Menopausia , Estudios Observacionales como Asunto , Osteoartritis de la Rodilla/diagnóstico por imagen , Estudios Prospectivos , Radiografía , Persona de Mediana Edad
19.
Mater Today Bio ; 16: 100448, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36238966

RESUMEN

Black Ti (bTi) surfaces comprising high aspect ratio nanopillars exhibit a rare combination of bactericidal and osteogenic properties, framing them as cell-instructive meta-biomaterials. Despite the existing data indicating that bTi surfaces induce osteogenic differentiation in cells, the mechanisms by which this response is regulated are not fully understood. Here, we hypothesized that high aspect ratio bTi nanopillars regulate cell adhesion, contractility, and nuclear translocation of transcriptional factors, thereby inducing an osteogenic response in the cells. Upon the observation of significant changes in the morphological characteristics, nuclear localization of Yes-associated protein (YAP), and Runt-related transcription factor 2 (Runx2) expression in the human bone marrow-derived mesenchymal stem cells (hMSCs), we inhibited focal adhesion kinase (FAK), Rho-associated protein kinase (ROCK), and YAP in separate experiments to elucidate their effects on the subsequent expression of Runx2. Our findings indicated that the increased expression of Runx2 in the cells residing on the bTi nanopillars compared to the flat Ti is highly dependent on the activity of FAK and ROCK. A mechanotransduction pathway is then postulated in which the FAK-dependent adhesion of cells to the extreme topography of the surface is in close relation with ROCK to increase the endogenous forces within the cells, eventually determining the cell shape and area. The nuclear translocation of YAP may also enhance in response to the changes in cell shape and area, resulting in the translation of mechanical stimuli to biochemical factors such as Runx2.

20.
Endocrinology ; 163(11)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36155779

RESUMEN

Ovariectomy-induced osteoporosis in mice results from an abrupt loss of ovarian sex steroids. Anti-Müllerian hormone knockout (AMHKO) mice show a gradual but accelerated ovarian aging, and therefore may better resemble osteoporosis following natural menopause. To study the impact of AMH signaling deficiency on bone, we compared trabecular and cortical bone parameters in 2-, 4-, 10-, and 16-month-old male and female wild-type (WT), AMHKO, and AMH type II receptor knockout (MRKI) mice using micro computed tomography (microCT). Goldner's staining was performed to confirm the observed bone phenotype. Both male and female AMHKO and MRKI mice showed age-dependent loss of trabecular bone (P < 0.001). However, reproductive-aged female AMHKO and MRKI mice had higher BV/TV compared with WT (P < 0.001), coinciding with increased growing follicle numbers (P < 0.05) and increased estrus inhibin B levels (AMHKO: P < 0.001; MRKI: P < 0.05) but normal inhibin A, estrogen, and progesterone levels. In aged female AMHKO and MRKI mice BV/TV did not differ from WT mice due to greater trabecular bone loss between 10 and 16 months compared with WT mice. At these ages, AMHKO and MRKI mice had reduced growing follicle numbers (P < 0.05) and reduced inhibin B levels (P < 0.001). At age 10 months, female MRKI mice had increased cortical bone parameters compared with WT mice (P < 0.01). Bone parameters of male AMHKO and MRKI mice did not differ from male WT mice. In conclusion, AMH signaling deficiency results in a sex- and age-dependent effect on predominantly trabecular bone. Our results further suggest that reproductive hormones beyond estrogen may contribute to bone homeostasis.


Asunto(s)
Hormona Antimülleriana , Osteoporosis , Animales , Hormona Antimülleriana/genética , Hueso Esponjoso/diagnóstico por imagen , Estrógenos , Femenino , Masculino , Ratones , Ratones Noqueados , Osteoporosis/genética , Progesterona , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...