Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 27(7): 603-10, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24654978

RESUMEN

Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.


Asunto(s)
Arabidopsis/microbiología , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas syringae/fisiología , Serina Endopeptidasas/metabolismo , Solanum lycopersicum/microbiología , Regulación Enzimológica de la Expresión Génica , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/inmunología , Serina Endopeptidasas/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
PLoS Pathog ; 7(8): e1002206, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901099

RESUMEN

The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Flagelina/inmunología , Inmunidad Innata , Inmunidad de la Planta , Pseudomonas aeruginosa/inmunología , Animales , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Bovinos , Línea Celular , Endopeptidasas/genética , Endopeptidasas/inmunología , Flagelina/metabolismo , Humanos , Interleucina-8/metabolismo , Mutación , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Receptor Toll-Like 5/antagonistas & inhibidores , Receptor Toll-Like 5/metabolismo
3.
BMC Plant Biol ; 10: 199, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-20836879

RESUMEN

BACKGROUND: Upon appropriate stimulation, plants increase their level of resistance against future pathogen attack. This phenomenon, known as induced resistance, presents an adaptive advantage due to its reduced fitness costs and its systemic and broad-spectrum nature. In Arabidopsis, different types of induced resistance have been defined based on the signaling pathways involved, particularly those dependent on salicylic acid (SA) and/or jasmonic acid (JA). RESULTS: Here, we have assessed the implication of the transcriptional regulator OCP3 in SA- and JA-dependent induced defenses. Through a series of double mutant analyses, we conclude that SA-dependent defense signaling does not require OCP3. However, we found that ocp3 plants are impaired in a Pseudomonas fluorescens WCS417r-triggered induced systemic resistance (ISR) against both Pseudomonas syrinagae DC3000 and Hyaloperonospora arabidopsidis, and we show that this impairment is not due to a defect in JA-perception. Likewise, exogenous application of JA failed to induce defenses in ocp3 plants. In addition, we provide evidence showing that the over-expression of an engineered cytosolic isoform of the disease resistance regulator NPR1 restores the impaired JA-induced disease resistance in ocp3 plants. CONCLUSIONS: Our findings point to a model in which OCP3 may modulate the nucleocytosolic function of NPR1 in the regulation of JA-dependent induced defense responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ciclopentanos/metabolismo , Proteínas de Homeodominio/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Inmunidad Innata , Mutación , Oomicetos/patogenicidad , Pseudomonas fluorescens/patogenicidad , Pseudomonas syringae/patogenicidad , ARN de Planta/genética , Ácido Salicílico/metabolismo , Factores de Transcripción/genética
4.
Phytochemistry ; 70(13-14): 1581-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19712950

RESUMEN

Beneficial soil-borne microorganisms can induce an enhanced defensive capacity in above-ground plant parts that provides protection against a broad spectrum of microbial pathogens and even insect herbivores. The phytohormones jasmonic acid (JA) and ethylene emerged as important regulators of this induced systemic resistance (ISR). ISR triggered by plant growth-promoting rhizobacteria and fungi is often not associated with enhanced biosynthesis of these hormones, nor with massive changes in defense-related gene expression. Instead, ISR-expressing plants are primed for enhanced defense. Priming is characterized by a faster and stronger expression of cellular defense responses that become activated only upon pathogen or insect attack, resulting in an enhanced level of resistance to the invader encountered. Recent advances in induced defense signaling research revealed regulators of ISR and suggest a model in which (JA)-related transcription factors play a central role in establishing the primed state.


Asunto(s)
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Plantas/microbiología , Transducción de Señal/fisiología , Bacterias/metabolismo , Hongos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunidad Innata/fisiología , Modelos Biológicos
5.
New Phytol ; 183(2): 419-431, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19413686

RESUMEN

Pseudomonas fluorescens WCS417r bacteria and beta-aminobutyric acid can induce disease resistance in Arabidopsis, which is based on priming of defence. In this study, we examined the differences and similarities of WCS417r- and beta-aminobutyric acid-induced priming. Both WCS417r and beta-aminobutyric acid prime for enhanced deposition of callose-rich papillae after infection by the oomycete Hyaloperonospora arabidopsis. This priming is regulated by convergent pathways, which depend on phosphoinositide- and ABA-dependent signalling components. Conversely, induced resistance by WCS417r and beta-aminobutyric acid against the bacterial pathogen Pseudomonas syringae are controlled by distinct NPR1-dependent signalling pathways. As WCS417r and beta-aminobutyric acid prime jasmonate- and salicylate-inducible genes, respectively, we subsequently investigated the role of transcription factors. A quantitative PCR-based genome-wide screen for putative WCS417r- and beta-aminobutyric acid-responsive transcription factor genes revealed distinct sets of priming-responsive genes. Transcriptional analysis of a selection of these genes showed that they can serve as specific markers for priming. Promoter analysis of WRKY genes identified a putative cis-element that is strongly over-represented in promoters of 21 NPR1-dependent, beta-aminobutyric acid-inducible WRKY genes. Our study shows that priming of defence is regulated by different pathways, depending on the inducing agent and the challenging pathogen. Furthermore, we demonstrated that priming is associated with the enhanced expression of transcription factors.


Asunto(s)
Aminobutiratos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Pseudomonas fluorescens/fisiología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Pared Celular/efectos de los fármacos , Pared Celular/microbiología , Ciclopentanos/farmacología , Genes de Plantas , Inmunidad Innata/genética , Modelos Genéticos , Datos de Secuencia Molecular , Oomicetos/efectos de los fármacos , Oomicetos/fisiología , Oxilipinas/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas/genética , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , Ácido Salicílico/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/efectos de los fármacos
6.
Nat Chem Biol ; 5(5): 308-16, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19377457

RESUMEN

Plants live in complex environments in which they intimately interact with a broad range of microbial pathogens with different lifestyles and infection strategies. The evolutionary arms race between plants and their attackers provided plants with a highly sophisticated defense system that, like the animal innate immune system, recognizes pathogen molecules and responds by activating specific defenses that are directed against the invader. Recent advances in plant immunity research have provided exciting new insights into the underlying defense signaling network. Diverse small-molecule hormones play pivotal roles in the regulation of this network. Their signaling pathways cross-communicate in an antagonistic or synergistic manner, providing the plant with a powerful capacity to finely regulate its immune response. Pathogens, on the other hand, can manipulate the plant's defense signaling network for their own benefit by affecting phytohormone homeostasis to antagonize the host immune response.


Asunto(s)
Reguladores del Crecimiento de las Plantas/fisiología , Plantas/inmunología , Plantas/metabolismo , Transducción de Señal
7.
Curr Opin Plant Biol ; 11(4): 443-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18585955

RESUMEN

Beneficial soil-borne microorganisms, such as plant growth promoting rhizobacteria and mycorrhizal fungi, can improve plant performance by inducing systemic defense responses that confer broad-spectrum resistance to plant pathogens and even insect herbivores. Different beneficial microbe-associated molecular patterns (MAMPs) are recognized by the plant, which results in a mild, but effective activation of the plant immune responses in systemic tissues. Evidence is accumulating that systemic resistance induced by different beneficials is regulated by similar jasmonate-dependent and ethylene-dependent signaling pathways and is associated with priming for enhanced defense.


Asunto(s)
Bacterias/inmunología , Hongos/inmunología , Inmunidad , Plantas/inmunología , Plantas/microbiología , Carácter Cuantitativo Heredable , Transducción de Señal
8.
New Phytol ; 180(2): 511-523, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18657213

RESUMEN

Upon appropriate stimulation, plants can develop an enhanced capacity to express infection-induced cellular defense responses, a phenomenon known as the primed state. Colonization of the roots of Arabidopsis thaliana by the beneficial rhizobacterial strain Pseudomonas fluorescens WCS417r primes the leaf tissue for enhanced pathogen- and insect-induced expression of jasmonate (JA)-responsive genes, resulting in an induced systemic resistance (ISR) that is effective against different types of pathogens and insect herbivores. Here the molecular mechanism of this rhizobacteria-induced priming response was investigated using a whole-genome transcript profiling approach. Out of the 1879 putative methyl jasmonate (MeJA)-responsive genes, 442 genes displayed a primed expression pattern in ISR-expressing plants. Promoter analysis of ISR-primed, MeJA-responsive genes and ISR-primed, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000)-responsive genes revealed over-representation of the G-box-like motif 5'-CACATG-3'. This motif is a binding site for the transcription factor MYC2, which plays a central role in JA- and abscisic acid-regulated signaling. MYC2 expression was consistently up-regulated in ISR-expressing plants. Moreover, mutants impaired in the JASMONATE-INSENSITIVE1/MYC2 gene (jin1-1 and jin1-2) were unable to mount WCS417r-ISR against Pst DC3000 and the downy mildew pathogen Hyaloperonospora parasitica. Together, these results pinpoint MYC2 as a potential regulator in priming for enhanced JA-responsive gene expression during rhizobacteria-mediated ISR.


Asunto(s)
Acetatos/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Enfermedades de las Plantas , Adaptación Fisiológica/genética , Animales , Arabidopsis/microbiología , Arabidopsis/fisiología , Perfilación de la Expresión Génica/métodos , Oomicetos/patogenicidad , Peronospora/parasitología , Reguladores del Crecimiento de las Plantas , Regiones Promotoras Genéticas , Pseudomonas fluorescens/fisiología , Pseudomonas syringae/patogenicidad , Factores de Transcripción
9.
Plant Physiol ; 146(3): 1293-304, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18218967

RESUMEN

Colonization of Arabidopsis thaliana roots by nonpathogenic Pseudomonas fluorescens WCS417r bacteria triggers a jasmonate/ethylene-dependent induced systemic resistance (ISR) that is effective against a broad range of pathogens. Microarray analysis revealed that the R2R3-MYB-like transcription factor gene MYB72 is specifically activated in the roots upon colonization by WCS417r. Here, we show that T-DNA knockout mutants myb72-1 and myb72-2 are incapable of mounting ISR against the pathogens Pseudomonas syringae pv tomato, Hyaloperonospora parasitica, Alternaria brassicicola, and Botrytis cinerea, indicating that MYB72 is essential to establish broad-spectrum ISR. Overexpression of MYB72 did not result in enhanced resistance against any of the pathogens tested, demonstrating that MYB72 is not sufficient for the expression of ISR. Yeast two-hybrid analysis revealed that MYB72 physically interacts in vitro with the ETHYLENE INSENSITIVE3 (EIN3)-LIKE3 transcription factor EIL3, linking MYB72 function to the ethylene response pathway. However, WCS417r activated MYB72 in ISR-deficient, ethylene-insensitive ein2-1 plants. Moreover, exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate induced wild-type levels of resistance in myb72-1, suggesting that MYB72 acts upstream of ethylene in the ISR pathway. Collectively, this study identified the transcriptional regulator MYB72 as a novel ISR signaling component that is required in the roots during early signaling steps of rhizobacteria-mediated ISR.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/inmunología , Pseudomonas fluorescens/fisiología , Factores de Transcripción/genética , Acetatos/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Glucanos/metabolismo , Mutagénesis Insercional , Oxilipinas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
10.
Plant Cell Environ ; 31(3): 301-24, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18088336

RESUMEN

Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis.


Asunto(s)
Arabidopsis/efectos de los fármacos , Cadmio/farmacología , Glutatión/metabolismo , Lignina/metabolismo , Sulfatos/metabolismo , Thlaspi/efectos de los fármacos , Arabidopsis/metabolismo , Cadmio/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Hierro/metabolismo , Hierro/farmacología , Níquel/metabolismo , Níquel/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Thlaspi/metabolismo , Transcripción Genética/efectos de los fármacos , Zinc/metabolismo , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...