Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(11): 115001, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563914

RESUMEN

We present a novel method to measure the arrival time statistics of continuous electron beams with subpicosecond resolution, based on the combination of an rf deflection cavity and fast single electron imaging. We observe Poissonian statistics within time bins from 100 to 2 ns and increasingly pronounced sub-Poissonian statistics as the time bin decreases from 2 ps to 340 fs. This 2D streak camera, in principle, enables femtosecond-level arrival time measurements, paving the way to observing Pauli blocking effects in electron beams and thus serving as an essential diagnostic tool toward degenerate electron beam sources for free-electron quantum optics.

2.
Ultramicroscopy ; 127: 19-24, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22939704

RESUMEN

The realization of high quality ultrashort pulsed beams requires ultrafast time-dependent electron optics. We present derivations of closed expressions both for the longitudinal and transverse focusing powers of resonant microwave TM010 cavities. The derived expressions are validated by particle tracking simulations using realistic cavity fields. For small field amplitudes, in which case the "weak lens" approximation holds, the focusing powers obtained from simulations are in good agreement with the derived expressions. Furthermore, the required phase and temperature stability for synchronization of electron bunches generated by femtosecond photoemission are discussed.

3.
Phys Rev Lett ; 105(3): 034802, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20867771

RESUMEN

All applications of high brightness ion beams depend on the possibility to precisely manipulate the trajectories of the ions or, more generally, to control their phase-space distribution. We show that the combination of a laser-cooled ion source and time-dependent acceleration fields gives new possibilities to perform precise phase-space control. We demonstrate reduction of the longitudinal energy spread and realization of a lens with control over its focal length and sign, as well as the sign of the spherical aberrations. This creates new possibilities to correct for the spherical and chromatic aberrations which are presently limiting the spatial resolution.

4.
Phys Rev Lett ; 105(26): 264801, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21231672

RESUMEN

We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.

5.
Microsc Microanal ; 15(4): 282-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19575829

RESUMEN

Ultrafast electron diffraction (UED) enables studies of structural dynamics at atomic length and timescales, i.e., 0.1 nm and 0.1 ps, in single-shot mode. At present UED experiments are based on femtosecond laser photoemission from solid state cathodes. These photoemission sources perform excellently, but are not sufficiently bright for single-shot studies of, for example, biomolecular samples. We propose a new type of electron source, based on near-threshold photoionization of a laser-cooled and trapped atomic gas. The electron temperature of these sources can be as low as 10 K, implying an increase in brightness by orders of magnitude. We investigate a setup consisting of an ultracold electron source and standard radio-frequency acceleration techniques by GPT tracking simulations. The simulations use realistic fields and include all pairwise Coulomb interactions. We show that in this setup 120 keV, 0.1 pC electron bunches can be produced with a longitudinal emittance sufficiently small for enabling sub-100 fs bunch lengths at 1% relative energy spread. A transverse root-mean-square normalized emittance of epsilon(x) = 10 nm is obtained, significantly better than from photoemission sources. Correlations in transverse phase-space indicate that the transverse emittance can be improved even further, enabling single-shot studies of biomolecular samples.

6.
Phys Rev Lett ; 102(3): 034802, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19257360

RESUMEN

We present time-of-flight measurements of the longitudinal energy spread of pulsed ultracold ion beams, produced by near-threshold ionization of rubidium atoms captured in a magneto-optical atom trap. Well-defined pulsed beams have been produced with energies of only 1 eV and a root-mean-square energy spread as low as 0.02 eV, 2 orders of magnitude lower than the state-of-the-art gallium liquid-metal ion source. The low energy spread is important for focused ion beam technology because it enables milling and ion-beam-induced deposition at sub-nm length scales with many ionic species, both light and heavy. In addition, we show that the slowly moving, low-energy-spread ion bunches are ideal for studying intricate space charge effects in pulsed beams. As an example, we present a detailed study of the transition from space charge dominated dynamics to ballistic motion.

7.
Philos Trans A Math Phys Eng Sci ; 364(1840): 679-87, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16483957

RESUMEN

External injection of electron bunches into laser-driven plasma waves so far has not resulted in 'controlled' acceleration, i.e. production of bunches with well-defined energy spread. Recent simulations, however, predict that narrow distributions can be achieved, provided the conditions for properly trapping the injected electrons are met. Under these conditions, injected bunch lengths of one to several plasma wavelengths are acceptable. This paper first describes current efforts to demonstrate this experimentally, using state-of-the-art radio frequency technology. The expected charge accelerated, however, is still low for most applications. In the second part, the paper addresses a number of novel concepts for significant enhancement of photo-injector brightness. Simulations predict that, once these concepts are realized, external injection into a wakefield accelerator will lead to accelerated bunch specs comparable to those of recent 'laser-into-gasjet' experiments, without the present irreproducibility of charge and final energy of the latter.

8.
Phys Rev Lett ; 95(16): 164801, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16241809

RESUMEN

We propose a technique for producing electron bunches that has the potential for advancing the state-of-the-art in brightness of pulsed electron sources by orders of magnitude. In addition, this method leads to femtosecond bunch lengths without the use of ultrafast lasers or magnetic compression. The electron source we propose is an ultracold plasma with electron temperatures down to 10 K, which can be fashioned from a cloud of laser-cooled atoms by photoionization just above threshold. Here we present results of simulations in a realistic setting, showing that an ultracold plasma has an enormous potential as a bright electron source.

9.
Phys Rev Lett ; 93(9): 094802, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15447108

RESUMEN

Uniform three-dimensional ellipsoidal distributions of charge are the ultimate goal in charged particle accelerator physics because of their linear internal force fields. Such bunches remain ellipsoidal with perfectly linear position-momentum phase space correlations in any linear transport system. We present a method, based on photoemission by radially shaped femtosecond laser pulses, to actually produce such bunches.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(4 Pt 2B): 046501, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12006036

RESUMEN

Nonlinear space-charge effects play an important role in emittance growth in the production of kA electron bunches with a bunch length much smaller than the bunch diameter. We propose a scheme employing the radial third-order component of an electrostatic acceleration field, to fully compensate the nonlinear space-charge effects. This results in minimal transverse root-mean-square emittance. The principle is demonstrated using our design simulations of a device for the production of high-quality, high-current, subpicosecond electron bunches using electrostatic acceleration in a 1 GV/m field. Simulations using the GPT code produce a bunch of 100 pC and 73 fs full width at half maximum pulse width, resulting in a peak current of about 1.2 kA at an energy of 2 MeV. The compensation scheme reduces the root-mean-square emittance by 34% to 0.4pi mm mrad.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...