Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(23): eadi1405, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285439

RESUMEN

Long-duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Because of its enormous energy (Eiso ≈ 1055 erg) and proximity (z ≈ 0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multiwavelength observations covering the first 3 months of its afterglow evolution. The x-ray brightness decays as a power law with slope ≈t-1.66, which is not consistent with standard predictions for jetted emission. We attribute this behavior to a shallow energy profile of the relativistic jet. A similar trend is observed in other energetic GRBs, suggesting that the most extreme explosions may be powered by structured jets launched by a common central engine.

2.
Science ; 333(6039): 203-6, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21680812

RESUMEN

Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 10(6) to 10(7) solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...