Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 780257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197994

RESUMEN

Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.

2.
J Exp Bot ; 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33617638

RESUMEN

In nature plants are usually subjected to a light/temperature regime of warm day and cold night (referred to as +DIF). Compared to growth under +DIF, Arabidopsis plants show compact growth under the same photoperiod, but with an inverse temperature regime (cold day and warm night: -DIF). Here we show that -DIF differentially affects the phase and amplitude of core clock gene expression. Under -DIF the phase of the morning clock gene CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is delayed, similar to that of plants grown on low sucrose. Indeed, under -DIF carbohydrate (CHO) starvation marker genes are specifically upregulated at the End of the Night (EN) in Arabidopsis rosettes. However, only in inner-rosette tissue (small sink leaves and petioles of older leaves) sucrose levels are lower under -DIF compared to under +DIF, suggesting that sucrose in source leaf blades is not sensed for CHO status and that sucrose transport from source to sink may be impaired at EN. CHO-starvation under -DIF correlated with increased starch breakdown during the night and decreased starch accumulation during the day. Moreover, we demonstrate that different ways of inducing CHO-starvation all link to reduced growth of sink leaves. Practical implications for control of plant growth in horticulture are discussed.

3.
Proc Natl Acad Sci U S A ; 116(50): 25343-25354, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767749

RESUMEN

Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histonas/genética , Calor , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Unión Proteica
4.
Metab Eng ; 54: 12-23, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30822491

RESUMEN

The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the Artemisia annua artemisinic aldehyde ∆11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrocostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrocostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrocostunolide and dihydroparthenolide for the production of 3ß-hydroxy-dihydrocostunolide and 3ß-hydroxy-dihydroparthenolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value.


Asunto(s)
Artemisia annua , Ingeniería Metabólica , Oxidorreductasas , Proteínas de Plantas , Sesquiterpenos/metabolismo , Tanacetum parthenium , Artemisia annua/enzimología , Artemisia annua/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tanacetum parthenium/enzimología , Tanacetum parthenium/genética
5.
Plant Methods ; 14: 83, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30258486

RESUMEN

BACKGROUND: Recently, putative pre-miRNAs locations have been identified in the introns of plant genes, raising the question whether such genes can show a dual functionality by having both correct maturation of the host gene pre-mRNA and maturation of the miRNAs from the intron. Here, we demonstrated that such dual functionality is indeed possible, using as host gene the firefly luciferase gene with intron (ffgLUC), and different artificial intronic miRNAs (aimiRNA) placed within the intron of ffgLUC. RESULTS: The miRNAs were based on the structure of the natural miR319a. Luciferase (LUC) activity in planta was used to evaluate a correct splicing of the ffgLUC mRNA. Different target sequences were inserted into the aimiRNA to monitor efficiency of silencing of different target mRNAs. After adjusting the insertion cloning strategy, the ffgLUCaimiR-319a gene showed dual functionality with correct splicing of ffgLUC and efficient silencing of TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 transcription factor genes targeted in-trans by aimiR-319a or targeting the transgene ffLUC in-cis by an aimiR-LUC. Silencing of endogenous target genes by aimiRNA or amiRNA is efficient both in transient assays and stable transformants. A behave as strong phenotype the PHYTOCHROME B (PHYB) gene was also targeted by ffgLUCaimiR-PHYB. The lack of silencing of the PHYB target was most likely due to an insensitive target site within the PHYB mRNA which can potentially form a double stranded stem structure. CONCLUSION: The combination of an overexpression construct with an artificial intronic microRNA allows for a simultaneous dual function in plants. The concept therefore adds new options to engineering of plant traits that require multiple gene manipulations.

6.
Artículo en Inglés | MEDLINE | ID: mdl-28861412

RESUMEN

Malaria is a real and constant danger to nearly half of the world's population of 7.4 billion people. In 2015, 212 million cases were reported along with 429,000 estimated deaths. The World Health Organization recommends artemisinin-based combinatorial therapies, and the artemisinin for this purpose is mainly isolated from the plant Artemisia annua. However, the plant supply of artemisinin is irregular, leading to fluctuation in prices. Here, we report the development of a simple, sustainable, and scalable production platform of artemisinin. The five genes involved in artemisinin biosynthesis were engineered into the moss Physcomitrella patens via direct in vivo assembly of multiple DNA fragments. In vivo biosynthesis of artemisinin was obtained without further modifications. A high initial production of 0.21 mg/g dry weight artemisinin was observed after only 3 days of cultivation. Our study shows that P. patens can be a sustainable and efficient production platform of artemisinin that without further modifications allow for industrial-scale production. A stable supply of artemisinin will lower the price of artemisinin-based treatments, hence become more affordable to the lower income communities most affected by malaria; an important step toward containment of this deadly disease threatening millions every year.

7.
Metab Eng ; 38: 159-169, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27421621

RESUMEN

Our lack of full understanding of transport and sequestration of the heterologous products currently limit metabolic engineering in plants for the production of high value terpenes. For instance, although all genes of the artemisinin/arteannuin B (AN/AB) biosynthesis pathway (AN-PW) from Artemisia annua have been identified, ectopic expression of these genes in Nicotiana benthamiana yielded mostly glycosylated pathway intermediates and only very little free (dihydro)artemisinic acid [(DH)AA]. Here we demonstrate that Lipid Transfer Protein 3 (AaLTP3) and the transporter Pleiotropic Drug Resistance 2 (AaPDR2) from A. annua enhance accumulation of (DH)AA in the apoplast of N. benthamiana leaves. Analysis of apoplast and cell content and apoplast exclusion assays show that AaLTP3 and AaPDR2 prevent reflux of (DH)AA from the apoplast back into the cells and enhances overall flux through the pathway. Moreover, AaLTP3 is stabilized in the presence of AN-PW activity and co-expression of AN-PW+AaLTP3+AaPDR2 genes yielded AN and AB in necrotic N. benthamiana leaves at 13 days post-agroinfiltration. This newly discovered function of LTPs opens up new possibilities for the engineering of biosynthesis pathways of high value terpenes in heterologous expression systems.


Asunto(s)
Artemisia annua/fisiología , Artemisininas/metabolismo , Vías Biosintéticas/fisiología , Proteínas Portadoras/metabolismo , Ingeniería Metabólica/métodos , Nicotiana/fisiología , Proteínas de Plantas/metabolismo , Artemisininas/aislamiento & purificación , Proteínas Portadoras/genética , Mejoramiento Genético/métodos , Redes y Vías Metabólicas/fisiología , Proteínas de Plantas/genética
9.
Mol Plant ; 8(3): 454-66, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25598143

RESUMEN

Plants produce numerous terpenes and much effort has been dedicated to the identification and characterization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of vesicle fusion in this process, we used Agrobacterium tumefaciens-mediated transient coexpression in Nicotiana benthamiana of an MtVAMP721e-RNAi construct (Vi) with either a caryophyllene synthase or a linalool synthase, respectively. Headspace analysis of the leaves showed that caryophyllene or linalool emission increased about five-fold when N. benthamiana VAMP72 function was blocked. RNA sequencing and protein ubiquitination analysis of the agroinfiltrated N. benthamiana leaf extracts suggested that increased terpene emissions may be attributed to proteasome malfunction based on three observations: leaves with TPS+Vi showed (1) a higher level of a DsRed marker protein, (2) a higher level of ubiquitinated proteins, and (3) coordinated induced expression of multiple proteasome genes, presumably caused by the lack of proteasome-mediated feedback regulation. However, caryophyllene or linalool did not inhibit proteasome-related protease activity in the in vitro assays. While the results are not conclusive for a role of vesicle fusion in terpene transport, they do show a strong interaction between inhibition of vesicle fusion and ectopic expression of certain terpenes. The results have potential applications in metabolic engineering.


Asunto(s)
Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , Proteínas SNARE/genética , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Ingeniería Metabólica , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Sesquiterpenos Policíclicos , Proteínas SNARE/metabolismo , Sesquiterpenos/química , Nicotiana/genética
10.
BMC Plant Biol ; 14: 170, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24947327

RESUMEN

BACKGROUND: Molecular characterization is an essential step of risk/safety assessment of genetically modified (GM) crops. Holistic approaches for molecular characterization using omics platforms can be used to confirm the intended impact of the genetic engineering, but can also reveal the unintended changes at the omics level as a first assessment of potential risks. The potential of omics platforms for risk assessment of GM crops has rarely been used for this purpose because of the lack of a consensus reference and statistical methods to judge the significance or importance of the pleiotropic changes in GM plants. Here we propose a meta data analysis approach to the analysis of GM plants, by measuring the transcriptome distance to untransformed wild-types. RESULTS: In the statistical analysis of the transcriptome distance between GM and wild-type plants, values are compared with naturally occurring transcriptome distances in non-GM counterparts obtained from a database. Using this approach we show that the pleiotropic effect of genes involved in indirect insect defence traits is substantially equivalent to the variation in gene expression occurring naturally in Arabidopsis. CONCLUSION: Transcriptome distance is a useful screening method to obtain insight in the pleiotropic effects of genetic modification.


Asunto(s)
Arabidopsis/genética , Arabidopsis/parasitología , Ingeniería Genética , Pleiotropía Genética , Insectos/fisiología , Transcriptoma/genética , Animales , Bases de Datos Genéticas , Genes de Plantas , Genotipo , Análisis Multivariante , Plantas Modificadas Genéticamente , Análisis de Componente Principal , Transcripción Genética , Transgenes/genética
11.
Phytochemistry ; 99: 73-85, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24472392

RESUMEN

The goal of this study was to characterise the metabolic flux phenotype of transgenic tobacco (Nicotiana tabacum) hairy roots engineered for increased biosynthesis of geraniol, an intermediate of the terpenoid indole alkaloid pathway. Steady state, stable isotope labelling was used to determine flux maps of central carbon metabolism for transgenic lines over-expressing (i) plastid-targeted geraniol synthase (pGES) from Valeriana officinalis, and (ii) pGES in combination with plastid-targeted geranyl pyrophosphate synthase from Arabidopsis thaliana (pGES+pGPPS), as well as for wild type and control-vector-transformed roots. Fluxes were constrained by the redistribution of label from [1-¹³C]-, [2-¹³C]- or [¹³C6]glucose into amino acids, sugars and organic acids at isotopic steady state, and by biomass output fluxes determined from the fractionation of [U-¹4C]glucose into insoluble polymers. No significant differences in growth and biomass composition were observed between the lines. The pGES line accumulated significant amounts of geraniol/geraniol glycosides (151±24 ng/mg dry weight) and the de novo synthesis of geraniol in pGES was confirmed by ¹³C labelling analysis. The pGES+pGPPS also accumulated geraniol and geraniol glycosides, but to lower levels than the pGES line. Although there was a distinct impact of the transgenes at the level of geraniol synthesis, other network fluxes were unaffected, reflecting the capacity of central metabolism to meet the relatively modest demand for increased precursors in the transgenic lines. It is concluded that re-engineering of the terpenoid indole alkaloid pathway will only require simultaneous manipulation of the steps producing the pathway precursors that originate in central metabolism in tissues engineered to produce at least an order of magnitude more geraniol than has been achieved so far.


Asunto(s)
Ingeniería Metabólica , Nicotiana/metabolismo , Raíces de Plantas/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos , Conformación Molecular , Fenotipo , Raíces de Plantas/química , Terpenos/química
12.
J Proteomics ; 93: 343-55, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23994444

RESUMEN

Most secreted proteins in eukaryotes are modified on the amino acid consensus sequence NxS/T by an N-glycan through the process of N-glycosylation. The N-glycans on glycoproteins are processed in the endoplasmic reticulum (ER) to different mannose-type N-glycans or, when the protein passes through the Golgi apparatus, to different complex glycan forms. Here we describe the capturing of N-glycopeptides from a trypsin digest of total protein extracts of Arabidopsis plants and release of these captured peptides following Peptide N-glycosidase (PNGase) treatment for analysis of N-glycan site-occupancy. The mixture of peptides released as a consequence of the PNGase treatment was analyzed by two dimensional nano-LC-MS. As the PNGase treatment of glycopeptides results in the deamidation of the asparagine (N) in the NxS/T site of the released peptide, this asparagine (N) to aspartic acid (D) conversion is used as a glycosylation 'signature'. The efficiency of PNGase F and PNGase A in peptide release is discussed. The identification of proteins with a single glycopeptide was limited by the used search algorithm but could be improved using a reference database including deamidated peptide sequences. Additional stringency settings were used for filtering results to minimize false discovery. This resulted in identification of 330 glycopeptides on 173 glycoproteins from Arabidopsis, of which 28 putative glycoproteins, that were previously not annotated as secreted protein in The Arabidopsis Information Resource database (TAIR). Furthermore, the identified glycosylation site occupancy helped to determine the correct topology for membrane proteins. A quantitative comparison of peptide signal was made between wild type and complex-glycan-less (cgl) mutant Arabidopsis from three replicate leaf samples using a label-free MS peak comparison. As an example, the identified membrane protein SKU5 (AT4G12420) showed differential glycopeptide intensity ratios between WT and cgl indicating heterogeneous glycan modification on single protein. BIOLOGICAL SIGNIFICANCE: Proteins that enter the secretory pathway are mostly modified by N-glycans. The function of N-glycosylation has been well studied in mammals. However, in plants the function of N-glycosylation is still unclear, because glycosylation mutants in plants often do not have a clear phenotype. Here we analyzed which proteins are modified by N-glycans in plants by developing a glycopeptide enrichment method for plant proteins. Subsequently, label free comparative proteomics was employed using protein fractions from wild type and from a mutant which is blocked in modification of the N-glycan into complex glycans. The results provide new information on N-glycosylation sites on numerous secreted proteins. Results allow for specific mapping of multiple glycosylation site occupancy on proteins, which provides information on which glycosylation sites are protected or non-used from downstream processing and thus presumably are buried into the protein structure. Glycoproteomics can therefore contribute to protein structure analysis. Indeed, mapping the glycosylation sites on membrane proteins gives information on the topology of protein folds over the membrane. We thus were able to correct the topology prediction of three membrane proteins. Besides, these studies also identified limitations in the software that is used to identify single modified peptide per protein. This article is part of a Special Issue entitled: Translational Plant Proteomics.


Asunto(s)
Arabidopsis/química , Glicoproteínas/química , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Glicopéptidos/aislamiento & purificación , Glicosilación , Glicoproteínas de Membrana/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo
13.
Planta ; 236(6): 1955-65, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23132522

RESUMEN

In order to obtain a tuberous root-specific promoter to be used in the transformation of cassava, a 1,728 bp sequence containing the cassava granule-bound starch synthase (GBSSI) promoter was isolated. The sequence proved to contain light- and sugar-responsive cis elements. Part of this sequence (1,167 bp) was cloned into binary vectors to drive expression of the firefly luciferase gene. Cassava cultivar Adira 4 was transformed with this construct or a control construct in which the luciferase gene was cloned behind the 35S promoter. Luciferase activity was measured in leaves, stems, roots and tuberous roots. As expected, the 35S promoter induced luciferase activity in all organs at similar levels, whereas the GBSSI promoter showed very low expression in leaves, stems and roots, but very high expression in tuberous roots. These results show that the cassava GBSSI promoter is an excellent candidate to achieve tuberous root-specific expression in cassava.


Asunto(s)
Manihot/enzimología , Regiones Promotoras Genéticas/genética , Almidón Sintasa/genética , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Luciferasas/genética , Luciferasas/metabolismo , Manihot/genética , Manihot/crecimiento & desarrollo , Meristema/enzimología , Meristema/genética , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Especificidad de Órganos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN , Almidón Sintasa/metabolismo
14.
Trends Plant Sci ; 16(9): 464-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21658989

RESUMEN

Shoot branching plays a pivotal role in the development of the aboveground plant structure. Therefore, to understand branching in relation to the environment, it is not only necessary to integrate the knowledge on mechanisms that regulate branching at multiple levels of biological organisation, but also to include plant structure explicitly. To this end, we propose the application of an established methodology called functional-structural plant modelling.


Asunto(s)
Simulación por Computador , Morfogénesis , Desarrollo de la Planta , Brotes de la Planta/crecimiento & desarrollo , Transporte Biológico , Ambiente , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Brotes de la Planta/fisiología , Plantas/metabolismo , Transducción de Señal , Relación Estructura-Actividad
15.
J Proteomics ; 74(8): 1463-74, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21605711

RESUMEN

In eukaryotes, proteins that are secreted into the ER are mostly modified by N-glycans on consensus NxS/T sites. The N-linked glycan subsequently undergoes varying degrees of processing by enzymes which are spatially distributed over the ER and the Golgi apparatus. The post-ER N-glycan processing to complex glycans differs between animals and plants, with consequences for N-glycan and glycopeptide isolation and characterization of plant glycoproteins. Here we describe some recent developments in plant glycoproteomics and illustrate how general and plant specific technologies may be used to address different important biological questions.


Asunto(s)
Glicómica/métodos , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteómica/métodos , Secuencia de Carbohidratos , Electroforesis en Gel de Poliacrilamida , Retículo Endoplásmico/metabolismo , Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Polisacáridos/metabolismo
16.
J Exp Bot ; 58(3): 615-26, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17251177

RESUMEN

Transgenic tomato [Lycopersicon esculentum (=Solanum lycopersicum)] lines overexpressing tomato PHYA, PHYB1, or PHYB2, under control of the constitutive double-35S promoter from cauliflower mosaic virus (CaMV) have been generated to test the level of saturation in individual phytochrome-signalling pathways in tomato. Western blot analysis confirmed the elevated phytochrome protein levels in dark-grown seedlings of the respective PHY overexpressing (PHYOE) lines. Exposure to 4 h of red light resulted in a decrease in phytochrome A protein level in the PHYAOE lines, indicating that the chromophore availability is not limiting for assembly into holoprotein and that the excess of phytochrome A protein is also targeted for light-regulated destruction. The elongation and anthocyanin accumulation responses of plants grown under white light, red light, far-red light, and end-of-day far-red light were used for characterization of selected PHYOE lines. In addition, the anthocyanin accumulation response to different fluence rates of red light of 4-d-old dark-grown seedlings was studied. The elevated levels of phyA in the PHYAOE lines had little effect on seedling and adult plant phenotype. Both PHYAOE in the phyA mutant background and PHYB2OE in the double-mutant background rescued the mutant phenotype, proving that expression of the transgene results in biologically active phytochrome. The PHYB1OE lines showed mild effects on the inhibition of stem elongation and anthocyanin accumulation and little or no effect on the red light high irradiance response. By contrast, the PHYB2OE lines showed a strong inhibition of elongation, enhancement of anthocyanin accumulation, and a strong amplification of the red light high irradiance response.


Asunto(s)
Luz , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Fenotipo , Fototropismo/genética , Fitocromo A/genética , Fitocromo B/genética , Regiones Promotoras Genéticas , Transgenes
18.
J Exp Bot ; 56(419): 2515-25, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16043450

RESUMEN

Growing potato tubers or freshly harvested mature tubers have a dormant apical bud. Normally, this dormancy is spontaneously broken after a period of maturation of the tuber, resulting in the growth of a new sprout. Here it is shown that in in vitro-cultured growing and maturing tubers, ethanol can rapidly break this dormancy and re-induce growth of the apical bud. The in vivo promoter activity of selected genes during this secondary growth of the apical bud was monitored, using luciferase as a reporter. In response to ethanol, the expression of carbohydrate-storage, protein-storage, and cell division-related genes are rapidly down-regulated in tuber tissue. It was shown that dormancy was broken by primary but not by secondary alcohols, and the effect of ethanol on sprouting and gene expression in tuber tissue was blocked by an inhibitor of alcohol dehydrogenase. By contrast, products derived from alcohol dehydrogenase activity (acetaldehyde and acetic acid) did not induce sprouting, nor did they affect luciferase reporter gene activity in the tuber tissue. Application of an inhibitor of gibberellin biosynthesis had no effect on ethanol-induced sprouting. It is suggested that ethanol-induced sprouting may be related to an alcohol dehydrogenase-mediated increase in the catabolic redox charge [NADH/(NADH+NAD+)].


Asunto(s)
Etanol/farmacología , Raíces de Plantas/fisiología , Solanum tuberosum/fisiología , Acetaldehído/farmacología , Acetatos/farmacología , División Celular/efectos de los fármacos , Genes Reporteros , Giberelinas/antagonistas & inhibidores , Giberelinas/biosíntesis , Luciferasas/genética , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Solanum tuberosum/citología , Solanum tuberosum/efectos de los fármacos
19.
Plant Mol Biol ; 50(4-5): 653-65, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12374298

RESUMEN

Analysis of gene expression and enzyme activity in pooled tuber samples has previously indicated different developmental events occurring in a fixed sequential order during tuber development, starting with the up-regulation of starch synthesis then induction of protein storage followed by cell division and cell enlargement. In this report we analysed in vivo promoter activity of genes related to cell division and storage of reserves during tuber development in individual in vitro tubers, using the non invasive firefly luciferase reporter system. The average activity of the storage related promoters (AGPaseS and lambdaPat21) was up-regulated prior to visible swelling, while the average activity of both cell cycle genes (cycB1;1 and CDC2a) showed an up-regulation after the onset of swelling. However, this novel system allowed expression analysis in individual tubers, which showed a variable up-regulation of both storage genes in relation to the moment of swelling, from 4 days before to 10 days after the onset of swelling. We conclude that during the first stages of tuber development, the moment of storage gene induction is independent from swelling. These results indicate that the developmental program of potato tubers does not consist of a fixed sequential order of events, but consists of independent developmental programs (storage and swelling), together resulting in the formation of a potato tuber. It is concluded that analysis of developmental programs by studying individuals may result in new insights, possibly obscured when using pooled samples.


Asunto(s)
Proteínas de Arabidopsis , Proteína Quinasa CDC2 , Regulación del Desarrollo de la Expresión Génica , Solanum tuberosum/genética , Hidrolasas de Éster Carboxílico/genética , Caulimovirus/genética , Ciclina B/genética , Ciclina B1 , Quinasas Ciclina-Dependientes/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros/genética , Glucosa-1-Fosfato Adenililtransferasa , Luciferasas/genética , Luciferasas/metabolismo , Nucleotidiltransferasas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Subunidades de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...