Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 56(Pt 6): 1714-1720, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38314141

RESUMEN

A general formalism is presented for the isotropically averaged single-chain scattering function (form factor) of single, double, triple and higher-order helices, as well as twisted fibres consisting of concentric layers of strands. Form factors for double and triple helices with differently sized grooves have also been derived. The formulas include the longitudinal and transverse interference over the pitch and radius of the helices, respectively. The results may be useful for the analysis of small-angle scattering data of (bio)macromolecules or molecular assemblies exhibiting a helical arrangement.

2.
Sci Rep ; 12(1): 15558, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114220

RESUMEN

Large topologically associated domains (TADs) contain irregularly spaced nucleosome clutches, and interactions between such clutches are thought to aid the compaction of these domains. Here, we reconstituted TAD-sized chromatin fibers containing hundreds of nucleosomes on native source human and lambda-phage DNA and compared their mechanical properties at the single-molecule level with shorter '601' arrays with various nucleosome repeat lengths. Fluorescent imaging showed increased compaction upon saturation of the DNA with histones and increasing magnesium concentration. Nucleosome clusters and their structural fluctuations were visualized in confined nanochannels. Force spectroscopy revealed not only similar mechanical properties of the TAD-sized fibers as shorter fibers but also large rupture events, consistent with breaking the interactions between distant clutches of nucleosomes. Though the arrays of native human DNA, lambda-phage and '601' DNA featured minor differences in reconstitution yield and nucleosome stability, the fibers' global structural and mechanical properties were similar, including the interactions between nucleosome clutches. These single-molecule experiments quantify the mechanical forces that stabilize large TAD-sized chromatin domains consisting of disordered, dynamically interacting nucleosome clutches and their effect on the condensation of large chromatin domains.


Asunto(s)
Histonas , Nucleosomas , Cromatina , ADN/química , Histonas/química , Humanos , Magnesio
3.
Methods Mol Biol ; 2538: 305-317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951308

RESUMEN

Nanofluidics is an emerging methodology to investigate single biomacromolecules without functionalization and/or attachment of the molecules to a substrate. In conjunction with fluorescence microscopy, it can be used to investigate structural and dynamical aspects of amyloid-DNA interaction. Here, we summarize the methodology for fabricating lab-on-chip devices in relatively cheap polymer resins and featuring quasi one-dimensional nanochannels with a cross-sectional diameter of tens to a few hundred nanometers. Site-specific staining of amyloid-forming protein Hfq with a fluorescence dye is also described. The methodology is illustrated with two application studies. The first study involves assembling bacterial amyloid proteins such as Hfq on double-stranded DNA and monitoring the folding and compaction of DNA in a condensed state. The second study is about the concerted motion of Hfq on DNA and how this is related to DNA's internal motion. Explicit details of procedures and workflows are given throughout.


Asunto(s)
Proteínas Amiloidogénicas , ADN , Proteínas Bacterianas , ADN/química , Sondas de ADN , Proteínas de Unión al ADN
4.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328711

RESUMEN

The presence of co-infections or superinfections with bacterial pathogens in COVID-19 patients is associated with poor outcomes, including increased morbidity and mortality. We hypothesized that SARS-CoV-2 and its components interact with the biofilms generated by commensal bacteria, which may contribute to co-infections. This study employed crystal violet staining and particle-tracking microrheology to characterize the formation of biofilms by Streptococcus pneumoniae and Staphylococcus aureus that commonly cause secondary bacterial pneumonia. Microrheology analyses suggested that these biofilms were inhomogeneous soft solids, consistent with their dynamic characteristics. Biofilm formation by both bacteria was significantly inhibited by co-incubation with recombinant SARS-CoV-2 spike S1 subunit and both S1 + S2 subunits, but not with S2 extracellular domain nor nucleocapsid protein. Addition of spike S1 and S2 antibodies to spike protein could partially restore bacterial biofilm production. Furthermore, biofilm formation in vitro was also compromised by live murine hepatitis virus, a related beta-coronavirus. Supporting data from LC-MS-based proteomics of spike-biofilm interactions revealed differential expression of proteins involved in quorum sensing and biofilm maturation, such as the AI-2E family transporter and LuxS, a key enzyme for AI-2 biosynthesis. Our findings suggest that these opportunistic pathogens may egress from biofilms to resume a more virulent planktonic lifestyle during coronavirus infections. The dispersion of pathogens from biofilms may culminate in potentially severe secondary infections with poor prognosis. Further detailed investigations are warranted to establish bacterial biofilms as risk factors for secondary pneumonia in COVID-19 patients.


Asunto(s)
Antibiosis , Biopelículas , Coronavirus/fisiología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Staphylococcus aureus/fisiología , Streptococcus pneumoniae/fisiología , Animales , Coinfección , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Interacciones Microbianas , Serogrupo , Staphylococcus aureus/clasificación , Streptococcus pneumoniae/clasificación
5.
J Phys Chem B ; 126(7): 1477-1482, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35166115

RESUMEN

The mobility of protein is fundamental in the machinery of life. Here, we have investigated the effect of DNA binding in conjunction with DNA segmental fluctuation (internal motion) of the bacterial Hfq master regulator devoid of its amyloid C-terminus domain. Hfq is one of the most abundant nucleoid associated proteins that shape the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy has been used to track a C-terminus domain lacking mutant form of Hfq on double-stranded DNA, which is stretched by confinement to a rectangular nanofluidic channel. The mobility of the mutant is strongly accelerated with respect to the wild-type variant. Furthermore, it shows a reverse dependence on the internal motion of DNA, in that slower motion results in slower protein diffusion. The results demonstrate the subtle role of DNA internal motion in controlling the mobility of a nucleoid associated protein, and, in particular, the importance of transient binding and moving DNA strands out of the way.


Asunto(s)
Proteínas de Escherichia coli , Proteína de Factor 1 del Huésped , Proteínas Bacterianas/metabolismo , ADN/química , Proteínas de Unión al ADN/química , Difusión , Proteínas de Escherichia coli/química , Proteína de Factor 1 del Huésped/química , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Unión Proteica
6.
QRB Discov ; 3: e15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37529279

RESUMEN

Interactions between proteins and single-stranded DNA (ssDNA) are crucial for many fundamental biological processes, including DNA replication and genetic recombination. Thus, understanding detailed mechanisms of these interactions is necessary to uncover regulatory rules occurring in all living cells. The RNA-binding Hfq is a pleiotropic bacterial regulator that mediates many aspects of nucleic acid metabolism. The protein notably mediates mRNA stability and translation efficiency by using stress-related small regulatory RNA as cofactors. In addition, Hfq helps to compact double-stranded DNA. In this paper, we focused on the action of Hfq on ssDNA. A combination of experimental methodologies, including spectroscopy and molecular imaging, has been used to probe the interactions of Hfq and its amyloid C-terminal region with ssDNA. Our analysis revealed that Hfq binds to ssDNA. Moreover, we demonstrate for the first time that Hfq drastically changes the structure and helical parameters of ssDNA, mainly due to its C-terminal amyloid-like domain. The formation of the nucleoprotein complexes between Hfq and ssDNA unveils important implications for DNA replication and recombination.

7.
Biophys J ; 119(11): 2326-2334, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33121944

RESUMEN

Chromatin compaction and internal motion are fundamental aspects of gene expression regulation. Here, we have investigated chromatin fibers comprising recombinant histone octamers reconstituted with double-stranded bacteriophage T4-DNA. The size of the fibers approaches the typical size of genomic topologically associated domains. Atomic force and fluorescence (correlation) microscopy have been used to assess the structural organization, histone-induced compaction, and internal motion. In particular, the fibers are stretched on arrays of nanochannels, each channel with a diameter of 60 or 125 nm. Major intrafiber segregation and fast internal fluctuations are observed. Full compaction was only achieved by triggering an attractive nucleosome interaction through the addition of magnesium cations. Besides compaction, histone complexation results in a dramatic decrease in the fiber's relaxation time. The relaxation times are similar to those of naked DNA with a comparable stretch, which indicates that internal motion is governed by the dynamics of uncompressed linker strands. Furthermore, the main reorganization process is association-dissociation of individually compacted regions. We surmise that the modulation of chromatin's internal motion by histone complexation might have implications for transcriptional bursting.


Asunto(s)
Cromatina , Nucleosomas , Bacteriófago T4 , ADN , Histonas
8.
J Phys Chem Lett ; 11(19): 8424-8429, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32930601

RESUMEN

Protein transport on DNA is at the core of the machinery of life. Here we investigated the influence of DNA internal motion on the mobility of Hfq, which is involved in several aspects of nucleic acid metabolism and is one of the nucleoid-associated proteins that shape the bacterial chromosome. Fluorescence microscopy was used to follow Hfq on double-stranded DNA that was stretched by confinement to a channel with a diameter of 125 nm. The protein mobility shows a strong dependence on the internal motion of DNA in that slower motion results in faster protein diffusion. A model of released diffusion is proposed that is based on three-dimensional diffusion through the interior of the DNA coil interspersed by periods in which the protein is immobilized in a bound state. We surmise that the coupling between DNA internal motion and protein mobility has important implications for DNA metabolism and protein-binding-related regulation of gene expression.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Proteínas de Escherichia coli/química , Proteína de Factor 1 del Huésped/química , Secuencia de Aminoácidos , Difusión , Movimiento (Física) , Mutación , Imagen Óptica , Unión Proteica , Relación Estructura-Actividad
9.
Biomacromolecules ; 21(9): 3668-3677, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32786728

RESUMEN

Molecular transport of biomolecules plays a pivotal role in the machinery of life. Yet, this role is poorly understood due the lack of quantitative information. Here, the role and properties of the C-terminal region of Escherichia coli Hfq is reported, involved in controlling the flow of a DNA solution. A combination of experimental methodologies has been used to probe the interaction of Hfq with DNA and to measure the rheological properties of the complex. A physical gel with a temperature reversible elasticity modulus is formed due to the formation of noncovalent cross-links. The mechanical response of the complexes shows that they are inhomogeneous soft solids. Our experiments indicate that the Hfq C-terminal region could contribute to the genome's mechanical response. The reported viscoelasticity of the DNA-protein complex might have implications for cellular processes involving molecular transport of DNA or segments thereof.


Asunto(s)
Proteínas de Escherichia coli , Proteína de Factor 1 del Huésped , ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
10.
J Phys Chem Lett ; 10(3): 316-321, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30615463

RESUMEN

Genetic profiling would benefit from linearization of ssDNA through the exposure of the unpaired bases to gene-targeting probes. This is compromised by ssDNA's high flexibility and tendency to form self-annealed structures. Here, we demonstrate that self-annealing can be avoided through controlled coating with a cationic-neutral diblock polypeptide copolymer. Coating does not preclude site-specific binding of fluorescence labeled oligonucleotides. Bottlebrush-coated ssDNA can be linearized by confinement inside a nanochannel or molecular combing. A stretch of 0.32 nm per nucleotide is achieved inside a channel with a cross-section of 100 nm and a 2-fold excess of polypeptide with respect to DNA charge. With combing, the complexes are stretched to a similar extent. Atomic force microscopy of dried complexes on silica revealed that the contour and persistence lengths are close to those of dsDNA in the B-form. Labeling is based on hybridization and not limited by restriction enzymes. Enzyme-free labeling offers new opportunities for the detection of specific sequences.


Asunto(s)
ADN de Cadena Simple/química , Análisis de Secuencia de ADN , Benzoxazoles/química , ADN/química , ADN/metabolismo , Sondas de ADN/metabolismo , ADN de Cadena Simple/metabolismo , Microscopía de Fuerza Atómica , Desnaturalización de Ácido Nucleico , Compuestos de Quinolinio/química
11.
Soft Matter ; 14(12): 2322-2328, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29457176

RESUMEN

The effect of the heat unstable nucleoid structuring protein HU on the conformation of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. Pre-incubated DNA molecules contract in the longitudinal direction of the channel with increasing concentration of HU. This contraction is mainly due to HU-mediated bridging of distal DNA segments and is controlled by channel diameter as well as ionic composition and strength of the buffer. For over-threshold concentrations of HU, the DNA molecules compact into an condensed form. Divalent magnesium ions facilitate, but are not required for bridging nor condensation. The conformational response following exposure to HU was investigated with a nanofluidic device that allows an in situ change in environmental solution conditions. The stretch of the nucleoprotein complex first increases, reaches an apex in ∼20 min, and subsequently decreases to an equilibrium value pertaining to pre-incubated DNA molecules after ∼2 h. This observation is rationalised in terms of a time-dependent bending rigidity by structural rearrangement of bound HU protein followed by compaction through bridging interaction. Results are discussed in regard to previous results obtained for nucleoid associated proteins H-NS and Hfq, with important implications for protein binding related gene regulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Nanoestructuras/química , Conformación de Ácido Nucleico
12.
Nucleic Acids Res ; 46(2): 635-649, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29145649

RESUMEN

To gain insight into the conformational properties and compaction of megabase-long chromatin molecules, we reconstituted chromatin from T4 phage DNA (165 kb) and recombinant human histone octamers (HO). The unimolecular compaction, induced by divalent Mg2+ or tetravalent spermine4+ cations, studied by single-molecule fluorescence microscopy (FM) and dynamic light scattering (DLS) techniques, resulted in the formation of 250-400 nm chromatin condensates. The compaction on this scale of DNA size is comparable to that of chromatin topologically associated domains (TAD) in vivo. Variation of HO loading revealed a number of unique features related to the efficiency of chromatin compaction by multivalent cations, the mechanism of compaction, and the character of partly compact chromatin structures. The observations may be relevant for how DNA accessibility in chromatin is maintained. Compaction of saturated chromatin, in turn, is accompanied by an intra-chain segregation at the level of single chromatin molecules, suggesting an intriguing scenario of selective activation/deactivation of DNA as a result of chromatin fiber heterogeneity due to the nucleosome positioning. We suggest that this chromatin, reconstituted on megabase-long DNA because of its large size, is a useful model of eukaryotic chromatin.


Asunto(s)
Cationes/química , Cromatina/química , ADN Viral/química , Histonas/química , Imagen Individual de Molécula/métodos , Bacteriófago T4/genética , Cationes/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Conformación de Ácido Nucleico , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo
13.
Nucleic Acids Res ; 45(12): 7299-7308, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28521053

RESUMEN

Hfq is a bacterial protein that is involved in several aspects of nucleic acids metabolism. It has been described as one of the nucleoid associated proteins shaping the bacterial chromosome, although it is better known to influence translation and turnover of cellular RNAs. Here, we explore the role of Escherichia coli Hfq's C-terminal domain in the compaction of double stranded DNA. Various experimental methodologies, including fluorescence microscopy imaging of single DNA molecules confined inside nanofluidic channels, atomic force microscopy, isothermal titration microcalorimetry and electrophoretic mobility assays have been used to follow the assembly of the C-terminal and N-terminal regions of Hfq on DNA. Results highlight the role of Hfq's C-terminal arms in DNA binding, change in mechanical properties of the double helix and compaction of DNA into a condensed form. The propensity for bridging and compaction of DNA by the C-terminal domain might be related to aggregation of bound protein and may have implications for protein binding related gene regulation.


Asunto(s)
ADN Bacteriano/ultraestructura , ADN/ultraestructura , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Sitios de Unión , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , ADN/genética , ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Cinética , Agregado de Proteínas , Unión Proteica , Dominios Proteicos , Termodinámica
14.
ACS Nano ; 11(1): 144-152, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27936577

RESUMEN

Emerging DNA-based nanotechnologies would benefit from the ability to modulate the properties (e.g., solubility, melting temperature, chemical stability) of diverse DNA templates (single molecules or origami nanostructures) through controlled, self-assembling coatings. We here introduce a DNA coating agent, called C8-BSso7d, which binds to and coats with high specificity and affinity, individual DNA molecules as well as folded origami nanostructures. C8-BSso7d coats and protects without condensing, collapsing or destroying the spatial structure of the underlying DNA template. C8-BSso7d combines the specific nonelectrostatic DNA binding affinity of an archeal-derived DNA binding domain (Sso7d, 7 kDa) with a long hydrophilic random coil polypeptide (C8, 73 kDa), which provides colloidal stability (solubility) through formation of polymer brushes around the DNA templates. C8-BSso7d is produced recombinantly in yeast and has a precise (but engineerable) amino acid sequence of precise length. Using electrophoresis, AFM, and fluorescence microscopy we demonstrate protein coat formation with stiffening of one-dimensional templates (linear dsDNA, supercoiled dsDNA and circular ssDNA), as well as coat formation without any structural distortion or disruption of two-dimensional DNA origami template. Combining the programmability of DNA with the nonperturbing precise coating capability of the engineered protein C8-BSso7d holds promise for future applications such as the creation of DNA-protein hybrid networks, or the efficient transfection of individual DNA nanostructures into cells.


Asunto(s)
ADN/química , Péptidos/química , Proteínas/química , Sitios de Unión , Modelos Moleculares , Nanoestructuras/química , Nanotecnología , Péptidos/síntesis química , Conformación Proteica , Proteínas/síntesis química
15.
Biomicrofluidics ; 10(6): 064105, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27917252

RESUMEN

Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51 µm, 2.47 µm, and 2.60 µm superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules.

16.
Soft Matter ; 12(15): 3636-42, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26976786

RESUMEN

Nucleoid associated proteins (NAPs) play a key role in the compaction and expression of the prokaryotic genome. Here we report the organisation of a major NAP, the protein H-NS on a double stranded DNA fragment. For this purpose we have carried out a small angle neutron scattering study in conjunction with contrast variation to obtain the contributions to the scattering (structure factors) from DNA and H-NS. The H-NS structure factor agrees with a heterogeneous, two-state binding model with sections of the DNA duplex surrounded by protein and other sections having protein bound to the major groove. In the presence of magnesium chloride, we observed a structural rearrangement through a decrease in cross-sectional diameter of the nucleoprotein complex and an increase in fraction of major groove bound H-NS. The two observed binding modes and their modulation by magnesium ions provide a structural basis for H-NS-mediated genome organisation and expression regulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Proteínas Bacterianas/química , ADN/química , Proteínas de Unión al ADN/química , Genómica , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína
17.
Biophys J ; 109(11): 2338-51, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26636945

RESUMEN

Several recent experiments suggest that sharply bent DNA has a surprisingly high bending flexibility, but the cause of this flexibility is poorly understood. Although excitation of flexible defects can explain these results, whether such excitation can occur with the level of DNA bending in these experiments remains unclear. Intriguingly, the DNA contained preexisting nicks in most of these experiments but whether nicks might play a role in flexibility has never been considered in the interpretation of experimental results. Here, using full-atom molecular dynamics simulations, we show that nicks promote DNA basepair disruption at the nicked sites, which drastically reduces DNA bending energy. In addition, lower temperatures suppress the nick-dependent basepair disruption. In the absence of nicks, basepair disruption can also occur but requires a higher level of DNA bending. Therefore, basepair disruption inside B-form DNA can be suppressed if the DNA contains preexisting nicks. Overall, our results suggest that the reported mechanical anomaly of sharply bent DNA is likely dependent on preexisting nicks, therefore the intrinsic mechanisms of sharply bent nick-free DNA remain an open question.


Asunto(s)
Emparejamiento Base , ADN/química , Elasticidad , Secuencia de Bases , ADN/genética , Simulación de Dinámica Molecular , Temperatura
19.
Nucleic Acids Res ; 43(8): 4332-41, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25824948

RESUMEN

Hfq is a bacterial pleiotropic regulator that mediates several aspects of nucleic acids metabolism. The protein notably influences translation and turnover of cellular RNAs. Although most previous contributions concentrated on Hfq's interaction with RNA, its association to DNA has also been observed in vitro and in vivo. Here, we focus on DNA-compacting properties of Hfq. Various experimental technologies, including fluorescence microscopy imaging of single DNA molecules confined inside nanofluidic channels, atomic force microscopy and small angle neutron scattering have been used to follow the assembly of Hfq on DNA. Our results show that Hfq forms a nucleoprotein complex, changes the mechanical properties of the double helix and compacts DNA into a condensed form. We propose a compaction mechanism based on protein-mediated bridging of DNA segments. The propensity for bridging is presumably related to multi-arm functionality of the Hfq hexamer, resulting from binding of the C-terminal domains to the duplex. Results are discussed in regard to previous results obtained for H-NS, with important implications for protein binding related gene regulation.


Asunto(s)
ADN/química , Proteína de Factor 1 del Huésped/metabolismo , ADN/metabolismo , ADN/ultraestructura , Microfluídica , Conformación de Ácido Nucleico , Unión Proteica
20.
mBio ; 5(4): e01536-14, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25096883

RESUMEN

Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical and industrial settings. One of the defining features of a biofilm is its extracellular matrix. The matrix has a heterogeneous structure and is formed from a secretion of various biopolymers, including proteins, extracellular DNA, and polysaccharides. It is generally known to interact with biofilm cells, thus affecting cell physiology and cell-cell communication. Despite the fact that the matrix may comprise up to 90% of the biofilm dry weight, how the matrix properties affect biofilm structure, maturation, and interspecies interactions remain largely unexplored. This study reveals that bacteria can use specific extracellular polymers to modulate the physical properties of their microenvironment. This in turn impacts biofilm structure, differentiation, and interspecies interactions.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/metabolismo , Matriz Extracelular/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...