Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(4): e0215335, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31017936

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by a lack of dystrophin protein. Next to direct effects on the muscles, this has also metabolic consequences. The influence of nutrition on disease progression becomes more and more recognized. Protein intake by DMD patients may be insufficient to meet the increased demand of the constantly regenerating muscle fibers. This led to the hypothesis that improving protein uptake by the muscles could have therapeutic effects. The present study examined the effects of a modified diet, which composition might stimulate muscle growth, on disease pathology in the D2-mdx mouse model. D2-mdx males were fed with either a control diet or modified diet, containing high amounts of branched-chain amino acids, vitamin D3 and ursolic acid, for six weeks. Our study indicates that the modified diet could not ameliorate the muscle pathology. No effects on bodyweight or weight of individual muscles were observed. Neither did the diet affect severity of fibrosis or calcification of the muscles.


Asunto(s)
Distrofia Muscular de Duchenne/dietoterapia , Distrofia Muscular de Duchenne/patología , Aminoácidos de Cadena Ramificada/administración & dosificación , Animales , Calcinosis/patología , Colecalciferol/administración & dosificación , Proteínas en la Dieta/metabolismo , Modelos Animales de Enfermedad , Distrofina/deficiencia , Distrofina/genética , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Regeneración , Triterpenos/administración & dosificación , Ácido Ursólico
2.
Mol Ther Nucleic Acids ; 4: e265, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26623937

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON.

3.
Mol Ther Nucleic Acids ; 3: e156, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24691207

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by lack of functional dystrophin and results in progressive myofiber damage and degeneration. In addition, impaired muscle regeneration and fibrosis contribute to the progressive pathology of DMD. Importantly, transforming growth factor-ß (TGF-ß) is implicated in DMD pathology and is known to stimulate fibrosis and inhibit muscle regeneration. In this study, we present a new strategy to target TGF-ß signaling cascades by specifically inhibiting the expression of TGF-ß type I receptor TGFBR1 (ALK5). Antisense oligonucleotides (AONs) were designed to specifically induce exon skipping of mouse ALK5 transcripts. AON-induced exon skipping of ALK5 resulted in specific downregulation of full-length receptor transcripts in vitro in different cell types, repression of TGF-ß activity, and enhanced C2C12 myoblast differentiation. To determine the effect of these AONs in dystrophic muscles, we performed intramuscular injections of ALK5 AONs in mdx mice, which resulted in a decrease in expression of fibrosis-related genes and upregulation of Myog expression compared to control AON-injected muscles. In summary, our study presents a novel method to target TGF-ß signaling cascades with potential beneficial effects for DMD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...