Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851097

RESUMEN

Glycoconjugate vaccines have proven their worth in the protection and prevention of infectious diseases. The introduction of the Haemophilus influenzae type b vaccine is the prime example, followed by other glycoconjugate vaccines. Glycoconjugate vaccines consist of two components: the carrier protein and the carbohydrate antigen. Current carrier proteins are tetanus toxoid, diphtheria toxoid, CRM197, Haemophilus protein D and the outer membrane protein complex of serogroup B meningococcus. Carbohydrate antigens have been produced mainly by extraction and purification from the original host. However, current efforts show great advances in the development of synthetically produced oligosaccharides and bioconjugation. This review evaluates the advances of glycoconjugate vaccines in the last five years. We focus on developments regarding both new carriers and antigens. Innovative developments regarding carriers are outer membrane vesicles, glycoengineered proteins, new carrier proteins, virus-like particles, protein nanocages and peptides. With regard to conjugated antigens, we describe recent developments in the field of antimicrobial resistance (AMR) and ESKAPE pathogens.

2.
Anal Chem ; 94(35): 12033-12041, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36007249

RESUMEN

With the ongoing development of conjugate vaccines battling infectious diseases, there is a need for novel carriers. Although tetanus toxoid and CRM197 belong to the traditional carrier proteins, outer-membrane vesicles (OMVs) are an excellent alternative: in addition to their size, OMVs have self-adjuvanting properties due to the presence of genetically detoxified lipopolysaccharide (LPS) and are therefore ideal as a vaccine component or antigen carrier. An essential aspect of their development for vaccine products is characterization of OMVs with respect to size and purity. We report on the development of a field-flow fractionation multiangle light-scattering (FFF-MALS) method for such characterization. Here, we introduced NIST-traceable particle-size standards and BSA as a model protein to verify the precision of the size and purity analysis of the OMVs. We executed a validation program according to the principles provided in the ICH Guidelines Q2 (R1) to assess the quality attributes of the results obtained by FFF-MALS analysis. All validation characteristics showed excellent results with coefficients of variation between 0.4 and 7.32%. Estimation of limits of detection for hydrodynamic radius and particle concentration revealed that as little as 1 µg OMV still yielded accurate results. With the validated method, we further characterized a full downstream purification process of our proprietary OMV. This was followed by the evaluation of other purified OMVs from different bacterial origin. Finally, functionalizing OMVs with N-γ-(maleimidobutyryl)oxysuccinimide-ester (GMBS), generating ready-to-conjugate OMVs, did not affect the structural integrity of the OMVs and as such, they could be evaluated with the validated FFF-MALS method.


Asunto(s)
Fraccionamiento de Campo-Flujo , Lipopolisacáridos , Proteínas de la Membrana Bacteriana Externa/química , Lipopolisacáridos/química , Vacunas Conjugadas
3.
ACS Cent Sci ; 8(4): 449-460, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35559427

RESUMEN

Shigella, the causative agent of shigellosis, is among the main causes of diarrheal diseases with still a high morbidity in low-income countries. Relying on chemical synthesis, we implemented a multidisciplinary strategy to design SF2a-TT15, an original glycoconjugate vaccine candidate targeting Shigella flexneri 2a (SF2a). Whereas the SF2a O-antigen features nonstoichiometric O-acetylation, SF2a-TT15 is made of a synthetic 15mer oligosaccharide, corresponding to three non-O-acetylated repeats, linked at its reducing end to tetanus toxoid by means of a thiol-maleimide spacer. We report on the scale-up feasibility under GMP conditions of a high yielding bioconjugation process established to ensure a reproducible and controllable glycan/protein ratio. Preclinical and clinical batches complying with specifications from ICH guidelines, WHO recommendations for polysaccharide conjugate vaccines, and (non)compendial tests were produced. The obtained SF2a-TT15 vaccine candidate passed all toxicity-related criteria, was immunogenic in rabbits, and elicited bactericidal antibodies in mice. Remarkably, the induced IgG antibodies recognized a large panel of SF2a circulating strains. These preclinical data have paved the way forward to the first-in-human study for SF2a-TT15, demonstrating safety and immunogenicity. This contribution discloses the yet unreported feasibility of the GMP synthesis of conjugate vaccines featuring a unique homogeneous synthetic glycan hapten fine-tuned to protect against an infectious disease.

4.
J Pharm Sci ; 111(4): 1058-1069, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35114211

RESUMEN

The aim of this study was to demonstrate the strength of combining immunochemical and biophysical analysis tools for assessing the quality of Sabin inactivated poliovirus vaccine (Sabin-IPV) bulk products. We assessed Sabin-IPV serotypes 1, 2 and 3 from six different manufacturers and evaluated their comparability through biosensor analysis and biophysical characterization methods, including tryptophan fluorescence and asymmetrical flow field-flow fractionation - multi-angle light scattering analysis. These methods enabled us to assess antigenic as well as conformational and structural integrity profiles, respectively. Based on Sabin-IPV samples that were subjected to accelerated storage conditions, we revealed that existing immunochemical methods exhibit remarkably similar trends to the results obtained by the biophysical characterization methods. While the results underpin that the comparability of Sabin-IPV bulk products of different manufacturers is weak, information about their quality can rapidly be obtained by using both immunochemical and biophysical methods. Furthermore, the study highlights that quality assessment of Sabin-IPV can be obtained through biophysical techniques can complement the assessments performed with monoclonal antibodies and suggests that similar techniques could be employed to characterize other enteroviruses.


Asunto(s)
Poliomielitis , Poliovirus , Anticuerpos Antivirales , Antígenos Virales , Humanos , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral
5.
Bioconjug Chem ; 27(4): 883-92, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26918643

RESUMEN

Conjugation chemistry is among the most important parameters governing the efficacy of glycoconjugate vaccines. High robustness is required to ensure high yields and batch to batch reproducibility. Herein, we have established a robust bioconjugation protocol based on the thiol-maleimide addition. Major variables were determined and acceptable margins were investigated for a synthetic pentadecasaccharide-tetanus toxoid conjugate, which is a promising vaccine candidate against Shigella flexneri serotype 2a infection. The optimized process is applicable to any thiol-equipped hapten and provides an efficient control of the hapten:carrier ratio. Moreover, comparison of four S. flexneri 2a glycoconjugates only differing by their pentadecasaccharide:tetanus toxoid ratio confirmed preliminary findings indicating that hapten loading is critical for immunogenicity with an optimal ratio here in the range of 17 ± 5. In addition, the powerful influence of alum on the immunogenicity of a Shigella synthetic carbohydrate-based conjugate vaccine candidate is demonstrated for the first time, with a strong anti-S. flexneri 2a antibody response sustained for more than one year.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Carbohidratos/química , Disentería Bacilar/terapia , Vacunas Sintéticas/uso terapéutico , Cromatografía en Gel , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados , Shigella/inmunología , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunología
6.
Vaccine ; 33(48): 6908-13, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25045809

RESUMEN

Due to the rapidly increasing introduction of Haemophilus influenzae type b (Hib) and other conjugate vaccines worldwide during the last decade, reliable and robust analytical methods are needed for the quantitative monitoring of intermediate samples generated during fermentation (upstream processing, USP) and purification (downstream processing, DSP) of polysaccharide vaccine components. This study describes the quantitative characterization of in-process control (IPC) samples generated during the fermentation and purification of the capsular polysaccharide (CPS), polyribosyl-ribitol-phosphate (PRP), derived from Hib. Reliable quantitative methods are necessary for all stages of production; otherwise accurate process monitoring and validation is not possible. Prior to the availability of high performance anion exchange chromatography methods, this polysaccharide was predominantly quantified either with immunochemical methods, or with the colorimetric orcinol method, which shows interference from fermentation medium components and reagents used during purification. Next to an improved high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method, using a modified gradient elution, both the orcinol assay and high performance size exclusion chromatography (HPSEC) analyses were evaluated. For DSP samples, it was found that the correlation between the results obtained by HPAEC-PAD specific quantification of the PRP monomeric repeat unit released by alkaline hydrolysis, and those from the orcinol method was high (R(2)=0.8762), and that it was lower between HPAEC-PAD and HPSEC results. Additionally, HPSEC analysis of USP samples yielded surprisingly comparable results to those obtained by HPAEC-PAD. In the early part of the fermentation, medium components interfered with the different types of analysis, but quantitative HPSEC data could still be obtained, although lacking the specificity of the HPAEC-PAD method. Thus, the HPAEC-PAD method has the advantage of giving a specific response compared to the orcinol assay and HPSEC, and does not show interference from various components that can be present in intermediate and purified PRP samples.


Asunto(s)
Vacunas Bacterianas/análisis , Vacunas Bacterianas/aislamiento & purificación , Técnicas de Química Analítica/métodos , Cromatografía/métodos , Haemophilus influenzae tipo b/química , Polisacáridos Bacterianos/análisis , Polisacáridos/análisis , Polisacáridos/aislamiento & purificación , Polisacáridos Bacterianos/aislamiento & purificación , Sensibilidad y Especificidad , Tecnología Farmacéutica/métodos
7.
Biologicals ; 41(4): 231-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23726755

RESUMEN

The detoxification of tetanus toxin by formaldehyde is a crucial step in the production of tetanus toxoid. The inactivation results in chemically modified proteins and it determines largely the ultimate efficacy and safety of the vaccine. Currently, the quality of tetanus toxoid lots is evaluated in potency and safety tests performed in animals. As a possible alternative, this article describes a panel of in vitro methods, which provides detailed information about the quality of tetanus toxoid. Ten experimental lots of tetanus toxoid were prepared using increasing concentrations of formaldehyde and glycine to obtain tetanus toxoids having differences in antigenicity, immunogenicity, residual toxicity and protein structure. The structural properties of each individual toxoid were determined using immunochemical and physicochemical methods, including biosensor analysis, ELISA, circular dichroism, TNBS assay, differential scanning calorimetry, fluorescence and SDS-PAGE. The quality of a tetanus toxoid lot can be assessed by these set of analytical techniques. Based on antigenicity, immunogenicity and residual toxicity data, criteria are formulated that tetanus toxoids lot have to meet in order to have a high quality. The in vitro methods are a valuable selection of techniques for monitoring consistency of production of tetanus toxoid, especially for the detoxification process of tetanus toxin.


Asunto(s)
Formaldehído/química , Toxina Tetánica/química , Toxina Tetánica/farmacología , Toxoide Tetánico/química , Toxoide Tetánico/farmacología , Animales , Técnicas Biosensibles/métodos , Femenino , Control de Calidad , Toxoide Tetánico/efectos adversos
8.
Biomed Chromatogr ; 27(9): 1137-42, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23681893

RESUMEN

A gradient method has been devised for the rapid analysis of alkaline hydrolyzates of Haemophilus influenzae type b (Hib) capsular polysaccharide-based vaccines by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). As compared with published procedures, peak shape and sensitivity were significantly improved with this approach, analysis time was short and there was little interference from impurities. The limits of detection and quantification were established with a purified reference polysaccharide. We propose this method as a practical alternative for the analysis of minute amounts of Hib polysaccharide, which can be lower than with the conventional approaches.


Asunto(s)
Cápsulas Bacterianas/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía por Intercambio Iónico/métodos , Haemophilus influenzae tipo b/química , Cápsulas Bacterianas/metabolismo , Vacunas contra Haemophilus/química , Haemophilus influenzae tipo b/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Sensibilidad y Especificidad , Acetato de Sodio/química , Hidróxido de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...