Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Microbiol ; 61(6): e0015423, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37154734

RESUMEN

Diagnosis of bone and joint infections (BJI) relies on microbiological culture which has a long turnaround time and is challenging for certain bacterial species. Rapid molecular methods may alleviate these obstacles. Here, we investigate the diagnostic performance of IS-pro, a broad-scope molecular technique that can detect and identify most bacteria to the species level. IS-pro additionally informs on the amount of human DNA present in a sample, as a measure of leukocyte levels. This test can be performed in 4 h with standard laboratory equipment. Residual material of 591 synovial fluid samples derived from native and prosthetic joints from patients suspected of joint infections that were sent for routine diagnostics was collected and subjected to the IS-pro test. Bacterial species identification as well as bacterial load and human DNA load outcomes of IS-pro were compared to those of culture. At sample level, percent positive agreement (PPA) between IS-pro and culture was 90.6% (95% CI 85.7- to 94%) and negative percent agreement (NPA) was 87.7% (95% CI 84.1 to 90.6%). At species level PPA was 80% (95% CI 74.3 to 84.7%). IS-pro yielded 83 extra bacterial detections over culture for which we found supporting evidence for true positivity in 40% of the extra detections. Missed detections by IS-pro were mostly related to common skin species in low abundance. Bacterial and human DNA signals measured by IS-pro were comparable to bacterial loads and leukocyte counts reported by routine diagnostics. We conclude that IS-pro showed an excellent performance for fast diagnostics of bacterial BJI.


Asunto(s)
Artritis Infecciosa , Técnicas Microbiológicas , Infecciones Relacionadas con Prótesis , Humanos , Artritis Infecciosa/diagnóstico , Artritis Infecciosa/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Relacionadas con Prótesis/diagnóstico , Infecciones Relacionadas con Prótesis/microbiología , Prueba de Diagnóstico Rápido/instrumentación , Prueba de Diagnóstico Rápido/normas , Líquido Sinovial/citología , Líquido Sinovial/microbiología , Sensibilidad y Especificidad , ADN/genética , Técnicas Microbiológicas/instrumentación , Técnicas Microbiológicas/normas
2.
Nat Commun ; 12(1): 5340, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504068

RESUMEN

Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/genética , Triptófano/química , Sustitución de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutación , Operón , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Triptófano/metabolismo
3.
Front Microbiol ; 10: 1719, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417516

RESUMEN

The Campylobacterota, previously known as Epsilonproteobacteria, are a large group of Gram-negative mainly, spiral-shaped motile bacteria. Some members like the Sulfurospirillum spp. are free-living, while others such as Helicobacter spp. can only persist in strict association with a host organism as commensal or as pathogen. Species of this phylum colonize diverse habitats ranging from deep-sea thermal vents to the human stomach wall. Despite their divergent environments, they share common energy conservation mechanisms. The Campylobacterota have a large and remarkable repertoire of electron transport chain enzymes, given their small genomes. Although members of recognized families of transcriptional regulators are found in these genomes, sofar no orthologs known to be important for energy or redox metabolism such as ArcA, FNR or NarP are encoded in the genomes of the Campylobacterota. In this review, we discuss the strategies that members of Campylobacterota utilize to conserve energy and the corresponding regulatory mechanisms that regulate the branched electron transport chains in these bacteria.

4.
Environ Microbiol ; 20(4): 1374-1388, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29318721

RESUMEN

Bacteria have evolved different mechanisms to catabolize carbon sources from nutrient mixtures. They first consume their preferred carbon source, before others are used. Regulatory mechanisms adapt the metabolism accordingly to maximize growth and to outcompete other organisms. The human pathogen Campylobacter jejuni is an asaccharolytic Gram-negative bacterium that catabolizes amino acids and organic acids for growth. It prefers serine and aspartate as carbon sources, however it lacks all regulators known to be involved in regulating carbon source utilization in other organisms. In which manner C. jejuni adapts its metabolism towards the presence or absence of preferred carbon sources is unknown. In this study, we show with transcriptomic analysis and enzyme assays how C. jejuni adapts its metabolism in response to its preferred carbon sources. In the presence of serine as well as lactate and pyruvate C. jejuni inhibits the utilization of other carbon sources, by repressing the expression of a number of central metabolic enzymes. The regulatory proteins RacR, Cj1000 and CsrA play a role in the regulation of these metabolic enzymes. This metabolism dependent transcriptional repression correlates with an accumulation of intracellular succinate. Hence, we propose a demand-based catabolite repression mechanism in C. jejuni, depended on intracellular succinate levels.


Asunto(s)
Campylobacter jejuni/metabolismo , Represión Catabólica/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Ácido Succínico/metabolismo , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/genética , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Serina/metabolismo , Factores de Transcripción/metabolismo
5.
Mol Microbiol ; 105(4): 637-651, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28586527

RESUMEN

The generation of a membrane potential (Δψ), the major constituent of the proton motive force (pmf), is crucial for ATP synthesis, transport of nutrients and flagellar rotation. Campylobacter jejuni harbors a branched electron transport chain, enabling respiration with different electron donors and acceptors. Here, we demonstrate that a relatively high Δψ is only generated in the presence of either formate as electron donor or oxygen as electron acceptor, in combination with an acceptor/donor respectively. We show the necessity of the pmf for motility and growth of C. jejuni. ATP generation is not only accomplished by oxidative phosphorylation via the pmf, but also by substrate-level phosphorylation via the enzyme AckA. In response to a low oxygen tension, C. jejuni increases the transcription and activity of the donor complexes formate dehydrogenase (FdhABC) and hydrogenase (HydABCD) as well as the transcription of the alternative respiratory acceptor complexes. Our findings suggest that in the gut of warm-blooded animals, C. jejuni depends on at least formate or hydrogen as donor (in the anaerobic lumen) or oxygen as acceptor (near the epithelial cells) to generate a pmf that sustains efficient motility and growth for colonization and pathogenesis.


Asunto(s)
Campylobacter jejuni/metabolismo , Fuerza Protón-Motriz/fisiología , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Formiatos/metabolismo , Hidrógeno , Potenciales de la Membrana , Oxidación-Reducción , Oxígeno , Fosforilación
6.
Front Microbiol ; 6: 567, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097472

RESUMEN

The highly conserved enzyme γ-glutamyltranspeptidase (GGT) plays an important role in metabolism of glutathione and glutamine. Yet, the regulation of ggt transcription in prokaryotes is poorly understood. In the human pathogen Campylobacter jejuni, GGT is important as it contributes to persistent colonization of the gut. Here we show that the GGT activity in C. jejuni is dependent on a functional RacRS (reduced ability to colonize) two-component system. Electrophoretic mobility shift and luciferase reporter assays indicate that the response regulator RacR binds to a promoter region ~80 bp upstream of the ggt transcriptional start site, which contains a recently identified RacR DNA binding consensus sequence. RacR needs to be phosphorylated to activate the transcription of the ggt gene, which is the case under low oxygen conditions in presence of alternative electron acceptors. A functional GGT and RacR are needed to allow C. jejuni to grow optimally on glutamine as sole carbon source under RacR inducing conditions. However, when additional carbon sources are present C. jejuni is capable of utilizing glutamine independently of GGT. RacR is the first prokaryotic transcription factor known to directly up-regulate both the cytoplasmic [glutamine-2-oxoglutarate aminotransferase (GOGAT)] as well as the periplasmic (GGT) production of glutamate.

7.
Environ Microbiol ; 17(4): 1049-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24707969

RESUMEN

The natural environment of the human pathogen Campylobacter jejuni is the gastrointestinal tract of warm-blooded animals. In the gut, the availability of oxygen is limited; therefore, less efficient electron acceptors such as nitrate or fumarate are used by C. jejuni. The molecular mechanisms that regulate the activity of the highly branched respiratory chain of C. jejuni are still a mystery mainly because C. jejuni lacks homologues of transcription factors known to regulate energy metabolism in other bacteria. Here we demonstrate that dependent on the available electron acceptors the two-component system RacRS controls the production of fumarate from aspartate, as well as its transport and reduction to succinate. Transcription profiling, DNAse protection and functional assays showed that phosphorylated RacR binds to and represses at least five promoter elements located in front of genes involved in the uptake and synthesis of fumarate. The RacRS system is active in the presence of nitrate and trimethyl-amine-N-oxide under oxygen-limited conditions when fumarate is less preferred as an alternative electron acceptor. In the inactive state, RacRS allows utilization of fumarate for respiration. The unique C. jejuni RacRS regulatory system illustrates the disparate evolution of Campylobacter and aids the survival of this pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Metabolismo Energético/fisiología , Fumaratos/metabolismo , Tracto Gastrointestinal/microbiología , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Transporte Biológico/genética , Ciclo del Ácido Cítrico/genética , Transporte de Electrón/fisiología , Regulación Bacteriana de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Nitratos/metabolismo , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Ácido Succínico/metabolismo , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...