Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Astron (Dordr) ; 51(3): 661-697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744305

RESUMEN

The far-infrared (FIR) regime is one of the wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist. None of the medium-term satellite projects like SPICA, Millimetron, or the Origins Space Telescope will resolve this malady. For many research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited carbon monoxide (CO), light hydrides, and especially from water lines would open the door for transformative science. A main theme will be to trace the role of water in proto-planetary discs, to observationally advance our understanding of the planet formation process and, intimately related to that, the pathways to habitable planets and the emergence of life. Furthermore, key observations will zoom into the physics and chemistry of the star-formation process in our own Galaxy, as well as in external galaxies. The FIR provides unique tools to investigate in particular the energetics of heating, cooling, and shocks. The velocity-resolved data in these tracers will reveal the detailed dynamics engrained in these processes in a spatially resolved fashion, and will deliver the perfect synergy with ground-based molecular line data for the colder dense gas.

2.
Opt Express ; 28(22): 32693-32708, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114949

RESUMEN

We present a terahertz spatial filter consisting of two back-to-back (B2B) mounted elliptical silicon lenses and an opening aperture defined on a thin gold layer between the lenses. The beam filtering efficiency of the B2B lens system is investigated by simulation and experiment. Using a unidirectional antenna coupled 3rd-order distributed feedback (DFB) quantum cascade laser (QCL) at 3.86 THz as the source, the B2B lens system shows 72% transmissivity experimentally with a fundamental Gaussian mode as the input, in reasonably good agreement with the simulated value of 80%. With a proper aperture size, the B2B lens system is capable of filtering the non-Gaussian beam from the QCL to a nearly fundamental Gaussian beam, where Gaussicity increases from 74% to 99%, and achieves a transmissivity larger than 30%. Thus, this approach is proven to be an effective beam shaping technique for QCLs, making them to be suitable local oscillators in the terahertz range with a Gaussian beam. Besides, the B2B lens system is applicable to a wide frequency range if the wavelength dependent part is properly scaled.

3.
Opt Express ; 27(23): 34192-34203, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878472

RESUMEN

Large heterodyne receiver arrays (~100 pixel) allow astronomical instrumentations to map more area within limited space mission lifetime. One challenge is to generate multiple local oscillator (LO) beams. Here, we succeeded in generating 81 beams at 3.86 THz by combining a reflective, metallic Fourier grating with an unidirectional antenna coupled 3rd-order distributed feedback (DFB) quantum cascade laser (QCL). We have measured the diffracted 81 beams by scanning a single pyroelectric detector at a plane, which is in the far field for the diffraction beams. The measured output beam pattern agrees well with a simulated result from COMSOL Multiphysics, with respect to the angular distribution and power distribution among the 81 beams. We also derived the diffraction efficiency to be 94 ± 3%, which is very close to what was simulated for a manufactured Fourier grating (97%). For an array of equal superconducting hot electron bolometer mixers, 64 out of 81 beams can pump the HEB mixers with similar power, resulting in receiver sensitivities within 10%. Such a combination of a Fourier grating and a QCL can create an LO with 100 beams or more, enabling a new generation of large heterodyne arrays for astronomical instrumentation.

4.
Philos Trans A Math Phys Eng Sci ; 364(1848): 3101-6, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17015380

RESUMEN

The H3+ and H2D+ ions are important probes of the physical and chemical conditions in regions of the interstellar medium where new stars are forming. This paper reviews how observations of these species and of heavier ions such as HCO+ and H3O+ can be used to derive chemical and kinematic properties of nearby pre-stellar cores and the cosmic ray ionization rate towards more distant regions of high-mass star formation. Future prospects in the field are outlined at the end.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA