Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 217(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32271879

RESUMEN

We have generated mouse models of malignant mesothelioma (MM) based upon disruption of the Bap1, Nf2, and Cdkn2ab tumor suppressor loci in various combinations as also frequently observed in human MM. Inactivation of all three loci in the mesothelial lining of the thoracic cavity leads to a highly aggressive MM that recapitulates the histological features and gene expression profile observed in human patients. The tumors also show a similar inflammatory phenotype. Bap1 deletion alone does not cause MM but dramatically accelerates MM development when combined with Nf2 and Cdkn2ab (hereafter BNC) disruption. The accelerated tumor development is accompanied by increased Polycomb repression and EZH2-mediated redistribution of H3K27me3 toward promoter sites with concomitant activation of PI3K and MAPK pathways. Treatment of BNC tumor-bearing mice with cisplatin and pemetrexed, the current frontline treatment, prolongs survival. This makes the autochthonous mouse model described here very well suited to explore the pathogenesis of MM and validate new treatment regimens for MM, including immunotherapy.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Eliminación de Gen , Mesotelioma Maligno/metabolismo , Neurofibromina 2/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inmunofenotipificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transcripción Genética/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
2.
Cell Rep ; 30(11): 3837-3850.e3, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187553

RESUMEN

Fibroblast growth factor receptor 1 (FGFR1) is frequently amplified in human small-cell lung cancer (SCLC), but its contribution to SCLC and other lung tumors has remained elusive. Here, we assess the tumorigenic capacity of constitutive-active FGFR1 (FGFR1K656E) with concomitant RB and P53 depletion in mouse lung. Our results reveal a context-dependent effect of FGFR1K656E: it impairs SCLC development from CGRPPOS neuroendocrine (NE) cells, which are considered the major cell of origin of SCLC, whereas it promotes SCLC and low-grade NE bronchial lesions from tracheobronchial-basal cells. Moreover, FGFR1K656E induces lung adenocarcinoma (LADC) from most lung cell compartments. However, its expression is not sustained in LADC originating from CGRPPOS cells. Therefore, cell context and tumor stage should be taken into account when considering FGFR1 inhibition as a therapeutic option.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Oncogenes , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Proteína de Retinoblastoma/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Proteína p53 Supresora de Tumor/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Bronquios/patología , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Integrasas/metabolismo , Queratinas/metabolismo , Neoplasias Pulmonares/genética , Ratones , Mutación/genética , Cavidad Nasal/patología , Sistemas Neurosecretores/patología , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética
3.
Cell Rep ; 27(11): 3345-3358.e4, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31189116

RESUMEN

Small-cell lung cancer is the most aggressive type of lung cancer, characterized by a remarkable response to chemotherapy followed by development of resistance. Here, we describe SCLC subtypes in Mycl- and Nfib-driven GEMM that include CDH1-high peripheral primary tumor lesions and CDH1-negative, aggressive intrapulmonary metastases. Cisplatin treatment preferentially eliminates the latter, thus revealing a striking differential response. Using a combined transcriptomic and proteomic approach, we find a marked reduction in proliferation and metabolic rewiring following cisplatin treatment and present evidence for a distinctive metabolic and structural profile defining intrinsically resistant populations. This offers perspectives for effective combination therapies that might also hold promise for treating human SCLC, given the very similar response of both mouse and human SCLC to cisplatin.


Asunto(s)
Carcinoma de Células Pequeñas/genética , Resistencia a Antineoplásicos , Heterogeneidad Genética , Neoplasias Pulmonares/genética , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Células Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Proteoma/genética , Proteoma/metabolismo , Transcriptoma
4.
Mol Cancer Ther ; 18(4): 762-770, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30872379

RESUMEN

Small cell lung cancer (SCLC) is generally regarded as very difficult to treat, mostly due to the development of metastases early in the disease and a quick relapse with resistant disease. SCLC patients initially show a good response to treatment with the DNA damaging agents cisplatin and etoposide. This is, however, quickly followed by the development of resistant disease, which urges the development of novel therapies for this type of cancer. In this study, we set out to compile a comprehensive overview of the vulnerabilities of SCLC. A functional genome-wide screen where all individual genes were knocked out was performed to identify novel vulnerabilities of SCLC. By analysis of the knockouts that were lethal to these cancer cells, we identified several processes to be synthetic vulnerabilities in SCLC. We were able to validate the vulnerability to inhibition of the replication stress response machinery by use of Chk1 and ATR inhibitors. Strikingly, SCLC cells were more sensitive to these inhibitors than nontransformed cells. In addition, these inhibitors work synergistically with either etoposide and cisplatin, where the interaction is largest with the latter. ATR inhibition by VE-822 treatment in combination with cisplatin also outperforms the combination of cisplatin with etoposide in vivo Altogether, our study uncovered a critical dependence of SCLC on the replication stress response and urges the validation of ATR inhibitors in combination with cisplatin in a clinical setting.


Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cisplatino/uso terapéutico , Isoxazoles/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazinas/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Células A549 , Animales , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteína 9 Asociada a CRISPR/genética , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Cisplatino/administración & dosificación , Daño del ADN/efectos de los fármacos , Sinergismo Farmacológico , Etopósido/administración & dosificación , Etopósido/uso terapéutico , Humanos , Isoxazoles/administración & dosificación , Isoxazoles/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/administración & dosificación , Pirazinas/farmacología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Eur J Immunol ; 46(10): 2467-2480, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27457277

RESUMEN

Tertiary lymphoid tissue (TLT) is lymphoid tissue that forms in adult life as a result of chronic inflammation in a tissue or organ. TLT has been shown to form in a variety of chronic inflammatory diseases, though it is not clear if and how TLT develops in the inflamed colon during inflammatory bowel disease. Here, we show that TLT develops as newly formed lymphoid tissue in the colon following dextran sulphate sodium induced colitis in C57BL/6 mice, where it can be distinguished from the preexisting colonic patches and solitary intestinal lymphoid tissue. TLT in the inflamed colon develops following the expression of lymphoid tissue-inducing chemokines and adhesion molecules, such as CXCL13 and VCAM-1, respectively, which are produced by stromal organizer cells. Surprisingly, this process of TLT formation was independent of the lymphotoxin signaling pathway, but rather under neuronal control, as we demonstrate that selective surgical ablation of vagus nerve innervation inhibits CXCL13 expression and abrogates TLT formation without affecting colitis. Sympathetic neuron denervation does not affect TLT formation. Hence, we reveal that inflammation in the colon induces the formation of TLT, which is controlled by innervation through the vagus nerve.


Asunto(s)
Colitis/inmunología , Colon/inervación , Tejido Linfoide/inervación , Estructuras Linfoides Terciarias/patología , Nervio Vago/patología , Animales , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Colitis/inducido químicamente , Colon/patología , Sulfato de Dextran , Femenino , Tejido Linfoide/patología , Linfotoxina-alfa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Molécula 1 de Adhesión Celular Vascular/metabolismo
6.
Cell Rep ; 16(3): 631-43, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27373156

RESUMEN

Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1)-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Factores de Transcripción NFI/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Animales , Cadherinas/metabolismo , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ratones , Metástasis de la Neoplasia/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 309(4): H646-54, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26092978

RESUMEN

UNLABELLED: The brain plays a prominent role in the regulation of inflammation. Immune cells are under control of the so-called cholinergic anti-inflammatory reflex, mainly acting via autonomic innervation of the spleen. Activation of this reflex inhibits the secretion of proinflammatory cytokines and may reduce the development of atherosclerosis. Therefore, the aim of this study was to evaluate the effects of selective parasympathetic (Px) and sympathetic (Sx) denervation of the spleen on inflammatory status and atherosclerotic lesion development. Female APOE*3-Leiden.CETP mice, a well-established model for human-like lipid metabolism and atherosclerosis, were fed a cholesterol-containing Western-type diet for 4 wk after which they were subdivided into three groups receiving either splenic Px, splenic Sx, or sham surgery. The mice were subsequently challenged with the same diet for an additional 15 wk. Selective Px increased leukocyte counts (i.e., dendritic cells, B cells, and T cells) in the spleen and increased gene expression of proinflammatory cytokines in the liver and peritoneal leukocytes compared with Sx and sham surgery. Both Px and Sx increased circulating proinflammatory cytokines IL-1ß and IL-6. However, the increased proinflammatory status in denervated mice did not affect atherosclerotic lesion size or lesion composition. CONCLUSION: Predominantly selective Px of the spleen enhances the inflammatory status, which, however, does not aggravate diet-induced atherosclerotic lesion development.


Asunto(s)
Aterosclerosis/fisiopatología , Sistema Nervioso Autónomo/fisiología , Bazo/inmunología , Animales , Apolipoproteína E3/genética , Aterosclerosis/etiología , Aterosclerosis/inmunología , Desnervación , Dieta Alta en Grasa/efectos adversos , Femenino , Inflamación/inmunología , Inflamación/fisiopatología , Interleucina-1beta/sangre , Interleucina-6/sangre , Ratones , Reflejo , Bazo/inervación
8.
PLoS One ; 9(7): e102211, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25010202

RESUMEN

BACKGROUND: Postoperative ileus is characterized by a transient impairment of the gastrointestinal motility after abdominal surgery. The intestinal inflammation, triggered by handling of the intestine, is the main factor responsible for the prolonged dysmotility of the gastrointestinal tract. Secondary lymphoid organs of the intestine were identified as essential components in the dissemination of inflammation to the entire gastrointestinal tract also called field effect. The involvement of the spleen, however, remains unclear. AIM: In this study, we investigated whether the spleen responds to manipulation of the intestine and participates in the intestinal inflammation underlying postoperative ileus. METHODS: Mice underwent Laparotomy (L) or Laparotomy followed by Intestinal Manipulation (IM). Twenty-four hours later, intestinal and colonic inflammation was assessed by QPCR and measurement of the intestinal transit was performed. Analysis of homeostatic chemokines in the spleen was performed by QPCR and splenic cell populations analysed by Flow Cytometry. Blockade of the egress of cells from the spleen was performed by administration of the Sphingosine-1-phosphate receptor 1 (S1P1) agonist CYM-5442 10 h after L/IM. RESULTS: A significant decrease in splenic weight and cellularity was observed in IM mice 24 h post-surgery, a phenomenon associated with a decreased splenic expression level of the homeostatic chemokine CCL19. Splenic denervation restored the expression of CCL19 and partially prevented the reduction of splenocytes in IM mice. Treatment with CYM-5442 prevented the egress of splenocytes but did not ameliorate the intestinal inflammation underlying postoperative ileus. CONCLUSIONS: Intestinal manipulation results in two distinct phenomena: local intestinal inflammation and a decrease in splenic cellularity. The splenic response relies on an alteration of cell trafficking in the spleen and is partially regulated by the splenic nerve. The spleen however does not participate in the intestinal inflammation during POI.


Asunto(s)
Ileus/cirugía , Inflamación/metabolismo , Intestinos/cirugía , Bazo/metabolismo , Animales , Modelos Animales de Enfermedad , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Ileus/fisiopatología , Indanos/administración & dosificación , Inflamación/patología , Inflamación/cirugía , Mucosa Intestinal/metabolismo , Intestinos/fisiopatología , Masculino , Ratones , Oxadiazoles/administración & dosificación , Complicaciones Posoperatorias/metabolismo , Complicaciones Posoperatorias/patología , Periodo Posoperatorio , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Bazo/efectos de los fármacos
9.
PLoS One ; 9(1): e87785, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489965

RESUMEN

BACKGROUND: Electrical stimulation of the vagus nerve suppresses intestinal inflammation and normalizes gut motility in a mouse model of postoperative ileus. The exact anatomical interaction between the vagus nerve and the intestinal immune system remains however a matter of debate. In the present study, we provide additional evidence on the direct and indirect vagal innervation of the spleen and analyzed the anatomical evidence for neuroimmune modulation of macrophages by vagal preganglionic and enteric postganglionic nerve fibers within the intestine. METHODS: Dextran conjugates were used to label vagal preganglionic (motor) fibers projecting to the small intestine and spleen. Moreover, identification of the neurochemical phenotype of the vagal efferent fibers and enteric neurons was performed by immunofluorescent labeling. F4/80 antibody was used to label resident macrophages. RESULTS: Our anterograde tracing experiments did not reveal dextran-labeled vagal fibers or terminals in the mesenteric ganglion or spleen. Vagal efferent fibers were confined within the myenteric plexus region of the small intestine and mainly endings around nNOS, VIP and ChAT positive enteric neurons. nNOS, VIP and ChAT positive fibers were found in close proximity of intestinal resident macrophages carrying α7 nicotinic receptors. Of note, VIP receptors were found on resident macrophages located in close proximity of VIP positive nerve fibers. CONCLUSION: In the present study, we show that the vagus nerve does not directly interact with resident macrophages in the gut or spleen. Instead, the vagus nerve preferentially interacts with nNOS, VIP and ChAT enteric neurons located within the gut muscularis with nerve endings in close proximity of the resident macrophages.


Asunto(s)
Intestino Delgado/inervación , Macrófagos/fisiología , Bazo/inervación , Nervio Vago/fisiología , Acetilcolina/metabolismo , Animales , Vías Eferentes , Femenino , Intestino Delgado/citología , Intestino Delgado/metabolismo , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos BALB C , Plexo Mientérico/citología , Plexo Mientérico/fisiología , Cuello , Factores de Crecimiento Nervioso/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Bazo/citología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 305(5): G383-91, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23812038

RESUMEN

Nutritional stimulation of the cholecystokinin-1 receptor (CCK-1R) and nicotinic acetylcholine receptor (nAChR)-mediated vagal reflex was shown to reduce inflammation and preserve intestinal integrity. Mast cells are important early effectors of the innate immune response; therefore modulation of mucosal mast cells is a potential therapeutic target to control the acute inflammatory response in the intestine. The present study investigates intestinal mast cell responsiveness upon nutritional activation of the vagal anti-inflammatory reflex during acute inflammation. Mucosal mast cell degranulation was induced in C57/Bl6 mice by administration of Salmonella enterica LPS. Lipid-rich enteral feeding prior to LPS significantly decreased circulatory levels of mouse mast cell protease at 30 min post-LPS compared with isocaloric low-lipid nutrition or fasting. CCK-1R blockage reversed the inhibitory effects of lipid-rich feeding, whereas stimulation of the peripheral CCK-1R mimicked nutritional mast cell inhibition. The effects of lipid-rich nutrition were negated by nAChR blockers chlorisondamine and α-bungarotoxin and vagal intestinal denervation. Accordingly, release of ß-hexosaminidase by MC/9 mast cells following LPS or IgE-ovalbumin complexes was dose dependently inhibited by acetylcholine and nicotine. Application of GSK1345038A, a specific agonist of the nAChR α7, in bone marrow-derived mast cells from nAChR ß2-/- and wild types indicated that cholinergic inhibition of mast cells is mediated by the nAChR α7 and is independent of the nAChR ß2. Together, the present study reveals mucosal mast cells as a previously unknown target of the nutritional anti-inflammatory vagal reflex.


Asunto(s)
Degranulación de la Célula , Grasas de la Dieta/administración & dosificación , Nutrición Enteral , Inflamación/prevención & control , Mucosa Intestinal/inmunología , Mucosa Intestinal/inervación , Mastocitos/inmunología , Reflejo , Nervio Vago/fisiopatología , Animales , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Agonistas Colinérgicos/farmacología , Quimasas/sangre , Modelos Animales de Enfermedad , Antagonistas de los Receptores Histamínicos/farmacología , Inmunidad Mucosa , Inflamación/sangre , Inflamación/inmunología , Inflamación/fisiopatología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Lipopolisacáridos , Masculino , Mastocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas Nicotínicos/farmacología , Receptor de Colecistoquinina A/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Vagotomía Gástrica Proximal , Nervio Vago/efectos de los fármacos , Nervio Vago/inmunología , Nervio Vago/metabolismo , Nervio Vago/cirugía , beta-N-Acetilhexosaminidasas/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(14): 5813-8, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21402951

RESUMEN

Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time estimation. Recent studies suggested the dorsomedial hypothalamus (DMH) as the site for this food-entrained oscillator, which has led to considerable controversy in the literature. Herein we demonstrate by means of c-Fos immunohistochemistry that the neuronal activity of the suprachiasmatic nucleus (SCN), which signals the rest phase in nocturnal animals, is reduced when animals anticipate the scheduled food and, simultaneously, neuronal activity within the DMH increases. Using retrograde tracing and confocal analysis, we show that inhibition of SCN neuronal activity is the consequence of activation of GABA-containing neurons in the DMH that project to the SCN. Next, we show that DMH lesions result in a loss or diminution of FAA, simultaneous with increased activity in the SCN. A subsequent lesion of the SCN restored FAA. We conclude that in intact animals, FAA may only occur when the DMH inhibits the activity of the SCN, thus permitting locomotor activity. As a result, FAA originates from a neuronal network comprising an interaction between the DMH and SCN. Moreover, this study shows that the DMH-SCN interaction may serve as an intrahypothalamic system to gate activity instead of rest overriding circadian predetermined temporal patterns.


Asunto(s)
Anticipación Psicológica/fisiología , Núcleo Hipotalámico Dorsomedial/fisiología , Alimentos , Modelos Neurológicos , Núcleo Supraquiasmático/fisiología , Animales , Núcleo Hipotalámico Dorsomedial/patología , Inmunohistoquímica , Ácido Kaínico , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Núcleo Supraquiasmático/patología
12.
PLoS One ; 4(5): e5650, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19478857

RESUMEN

BACKGROUND: The biological clock, located in the hypothalamic suprachiasmatic nucleus (SCN), controls the daily rhythms in physiology and behavior. Early studies demonstrated that light exposure not only affects the phase of the SCN but also the functional activity of peripheral organs. More recently it was shown that the same light stimulus induces immediate changes in clock gene expression in the pineal and adrenal, suggesting a role of peripheral clocks in the organ-specific output. In the present study, we further investigated the immediate effect of nocturnal light exposure on clock genes and metabolism-related genes in different organs of the rat. In addition, we investigated the role of the autonomic nervous system as a possible output pathway of the SCN to modify the activity of the liver after light exposure. METHODOLOGY AND PRINCIPAL FINDINGS: First, we demonstrated that light, applied at different circadian times, affects clock gene expression in a different manner, depending on the time of day and the organ. However, the changes in clock gene expression did not correlate in a consistent manner with those of the output genes (i.e., genes involved in the functional output of an organ). Then, by selectively removing the autonomic innervation to the liver, we demonstrated that light affects liver gene expression not only via the hormonal pathway but also via the autonomic input. CONCLUSION: Nocturnal light immediately affects peripheral clock gene expression but without a clear correlation with organ-specific output genes, raising the question whether the peripheral clock plays a "decisive" role in the immediate (functional) response of an organ to nocturnal light exposure. Interestingly, the autonomic innervation of the liver is essential to transmit the light information from the SCN, indicating that the autonomic nervous system is an important gateway for the SCN to cause an immediate resetting of peripheral physiology after phase-shift inducing light exposures.


Asunto(s)
Sistema Nervioso Autónomo/efectos de la radiación , Relojes Biológicos/genética , Relojes Biológicos/efectos de la radiación , Oscuridad , Regulación de la Expresión Génica/efectos de la radiación , Hígado/inervación , Especificidad de Órganos/genética , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/efectos de la radiación , Animales , Desnervación Autonómica , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Hormonas/metabolismo , Hígado/metabolismo , Hígado/efectos de la radiación , Masculino , Especificidad de Órganos/efectos de la radiación , Glándula Pineal/metabolismo , Glándula Pineal/efectos de la radiación , Ratas , Ratas Wistar
13.
PLoS One ; 3(9): e3194, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18791643

RESUMEN

The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.


Asunto(s)
Glucemia/análisis , Ácido Glutámico/metabolismo , Receptores de GABA/metabolismo , Núcleo Supraquiasmático/patología , Ácido gamma-Aminobutírico/metabolismo , Animales , Relojes Biológicos , Glucemia/metabolismo , Ritmo Circadiano , Insulina/metabolismo , Luz , Masculino , Modelos Biológicos , Neuronas/metabolismo , Ratas , Ratas Wistar , Núcleo Supraquiasmático/metabolismo
14.
PLoS One ; 3(9): e3152, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18773078

RESUMEN

BACKGROUND: Recently the vagal output of the central nervous system has been shown to suppress the innate immune defense to pathogens. Here we investigated by anatomical and physiological techniques the communication of the brain with the spleen and provided evidence that the brain has the capacity to stimulate the production of antigen specific antibodies by its parasympathetic autonomic output. METHODOLOGY/PRINCIPAL FINDINGS: This conclusion was reached by successively demonstrating that: 1. The spleen receives not only sympathetic input but also parasympathetic input. 2. Intravenous trinitrophenyl-ovalbumin (TNP-OVA) does not activate the brain and does not induce an immune response. 3. Intravenous TNP-OVA with an inducer of inflammation; lipopolysaccharide (LPS), activates the brain and induces TNP-specific IgM. 4. LPS activated neurons are in the same areas of the brain as those that provide parasympathetic autonomic information to the spleen, suggesting a feed back circuit between brain and immune system. Consequently we investigated the interaction of the brain with the spleen and observed that specific parasympathetic denervation but not sympathetic denervation of the spleen eliminates the LPS-induced antibody response to TNP-OVA. CONCLUSIONS/SIGNIFICANCE: These findings not only show that the brain can stimulate antibody production by its autonomic output, it also suggests that the power of LPS as adjuvant to stimulate antibody production may also depend on its capacity to activate the brain. The role of the autonomic nervous system in the stimulation of the adaptive immune response may explain why mood and sleep have an influence on antibody production.


Asunto(s)
Antígenos/metabolismo , Bazo/inmunología , Bazo/inervación , Nervio Vago/patología , Animales , Encéfalo/metabolismo , Corticosterona/metabolismo , Desnervación , Herpesvirus Suido 1/metabolismo , Sistema Inmunológico , Lipopolisacáridos/química , Lipopolisacáridos/farmacología , Modelos Anatómicos , Procedimientos Neuroquirúrgicos , Ovalbúmina/química , Sistema Nervioso Parasimpático/metabolismo , Ratas , Bazo/fisiología
15.
Endocrinology ; 149(4): 1914-25, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18162516

RESUMEN

Daily variations in plasma glucose concentrations are controlled by the biological clock, located in the suprachiasmatic nucleus. Our previous studies indicated an important role for the sympathetic innervation of the liver in the generation of the daily glucose rhythm. In the present study, we investigated further the role of the autonomic nervous system (ANS) in the genesis of the plasma glucose rhythm. First, we showed that complete removal of the autonomic inputs to the liver did not impair the plasma glucose rhythm or the daily expression of the glucoregulatory enzymes in the liver. Consequently, we studied whether the daily glucose rhythm is driven by the daily feeding activity in denervated animals. Surprisingly, complete denervation combined with a noncircadian feeding schedule also did not abolish the 24-h profile in plasma glucose or all daily rhythms in the gene expression of liver enzymes. These results demonstrate that the mechanisms used by the suprachiasmatic nucleus to control the rhythmic expression of glucose-metabolizing enzymes and the 24-h rhythm in plasma glucose concentrations are highly versatile and the glucose rhythm can be maintained in absence of hepatic ANS input and/or a day/night rhythm in feeding activity. Interestingly, a hepatic sympathectomy or parasympathectomy did abolish the plasma glucose rhythm, demonstrating that a unilateral denervation of the liver is more deleterious to maintaining the rhythmic liver metabolism than a complete removal of both branches. This observation supports the notion that an unbalanced ANS in obesity and diabetes accounts for the disturbed glucose balance in these disorders.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Glucemia/análisis , Ritmo Circadiano/fisiología , Hígado/enzimología , Hígado/inervación , Animales , Corticosterona/sangre , Glucosa/metabolismo , Insulina/sangre , Glucógeno Hepático/análisis , Masculino , ARN Mensajero/análisis , Ratas , Ratas Wistar , Núcleo Supraquiasmático/fisiología
16.
FASEB J ; 20(11): 1874-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16818472

RESUMEN

The suprachiasmatic nucleus (SCN) is the "master clock" of the mammalian brain. It coordinates the peripheral clocks in the body, including the pineal clock that receives SCN input via a multisynaptic noradrenergic pathway. Rhythmic pineal melatonin production is disrupted in Alzheimer's disease (AD). Here we show that the clock genes hBmal1, hCry1, and hPer1 were rhythmically expressed in the pineal of controls (Braak 0). Moreover, hPer1 and hbeta1-adrenergic receptor (hbeta1-ADR) mRNA were positively correlated and showed a similar daily pattern. In contrast, in both preclinical (Braak I-II) and clinical AD patients (Braak V-VI), the rhythmic expression of clock genes was lost as well as the correlation between hPer1 and hbeta1-ADR mRNA. Intriguingly, hCry1 mRNA was increased in clinical AD. These changes are probably due to a disruption of the SCN control, as they were mirrored in the rat pineal deprived of SCN control. Indeed, a functional disruption of the SCN was observed from the earliest AD stages onward, as shown by decreased vasopressin mRNA, a clock-controlled major output of the SCN. Thus, a functional disconnection between the SCN and the pineal from the earliest AD stage onward could account for the pineal clock gene changes and underlie the circadian rhythm disturbances in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Glándula Pineal/fisiología , Progresión de la Enfermedad , Humanos , Modelos Biológicos , Oscilometría , Glándula Pineal/fisiopatología , Sueño/fisiología , Vigilia/fisiología
17.
Endocrinology ; 147(3): 1140-7, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16339209

RESUMEN

The hypothalamus uses hormones and the autonomic nervous system to balance energy fluxes in the body. Here we show that the autonomic nervous system has a distinct organization in different body compartments. The same neurons control intraabdominal organs (intraabdominal fat, liver, and pancreas), whereas sc adipose tissue located outside the abdominal compartment receives input from another set of autonomic neurons. This differentiation persists up to preautonomic neurons in the hypothalamus, including the biological clock, that have a distinct organization depending on the body compartment they command. Moreover, we demonstrate a neuronal feedback from adipose tissue that reaches the brainstem. We propose that this compartment-specific organization offers a neuroanatomical perspective for the regional malfunction of organs in type 2 diabetes, where increased insulin secretion by the pancreas and disturbed glucose metabolism in the liver coincide with an augmented metabolic activity of visceral compared with sc adipose tissue.


Asunto(s)
Tejido Adiposo/metabolismo , Sistema Nervioso Autónomo/metabolismo , Encéfalo/patología , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Páncreas/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Distribución de la Grasa Corporal , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Homeostasis , Hipotálamo/metabolismo , Insulina/metabolismo , Secreción de Insulina , Masculino , Síndrome Metabólico/patología , Modelos Biológicos , Modelos Neurológicos , Neuronas Motoras/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Ratas , Ratas Wistar , Médula Espinal/metabolismo , Factores de Tiempo
18.
Endocrinology ; 147(1): 283-94, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16195398

RESUMEN

The arcuate nucleus (ARC) is crucial for the maintenance of energy homeostasis as an integrator of long- and short-term hunger and satiety signals. The expression of receptors for metabolic hormones, such as insulin, leptin, and ghrelin, allows ARC to sense information from the periphery and signal it to the central nervous system. The ventromedial ARC (vmARC) mainly comprises orexigenic neuropeptide agouti-related peptide and neuropeptide Y neurons, which are sensitive to circulating signals. To investigate neural connections of vmARC within the central nervous system, we injected the neuronal tracer cholera toxin B into vmARC. Due to variation of injection sites, tracer was also injected into the subependymal layer of the median eminence (seME), which showed similar projection patterns as the vmARC. We propose that the vmARC forms a complex with the seME, their reciprocal connections with viscerosensory areas in brain stem, and other circumventricular organs, suggesting the exchange of metabolic and circulating information. For the first time, the vmARC-seME was shown to have reciprocal interaction with the suprachiasmatic nucleus (SCN). Activation of vmARC neurons by systemic administration of the ghrelin mimetic GH-releasing peptide-6 combined with SCN tracing showed vmARC neurons to transmit feeding related signals to the SCN. The functionality of this pathway was demonstrated by systemic injection of GH-releasing peptide-6, which induced Fos in the vmARC and resulted in a reduction of about 40% of early daytime Fos immunoreactivity in the SCN. This observation suggests an anatomical and functional pathway for peripheral hormonal feedback to the hypothalamus, which may serve to modulate the activity of the SCN.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Neuronas/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Comunicación Celular/fisiología , Toxina del Cólera , Masculino , Eminencia Media/fisiología , Microscopía Confocal , Neuronas/citología , Ratas , Ratas Wistar , Núcleo Supraquiasmático/citología
19.
Diabetes ; 52(7): 1709-15, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12829637

RESUMEN

Plasma glucose concentrations display a daily rhythm generated by the hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN). How the SCN orchestrates this rhythm is unknown. Because glucagon stimulates hepatic glucose production, we hypothesized that if glucagon has a daily rhythm, then it may be responsible for the glucose rhythm. From hourly blood samples, we determined daily glucagon concentrations for intact and SCN-lesioned rats. Intact ad libitum-fed rats showed a clear daily glucagon rhythm, and fasting resulted in an even more pronounced rhythm. It is interesting that a decrease in glucagon concentrations, instead of the expected increase, occurred already shortly after food removal. Toward the start of the active period, a peak in glucagon levels occurred, with concentrations similar to those measured in ad libitum-fed rats. SCN lesions abolished rhythmicity in plasma glucagon profiles. Scheduled-fed rats showed meal-induced glucagon peaks but also a daily rhythm in basal premeal glucagon concentrations. Plasma glucose concentrations of ad libitum-and scheduled-fed rats, however, were similar. In conclusion, feeding and the biological clock control 24-h plasma glucagon concentrations. In fed rats, glucagon is not responsible for the daily glucose rhythm. During fasting, however, glucagon may contribute to energy mobilization when the activity period starts.


Asunto(s)
Relojes Biológicos , Ritmo Circadiano/fisiología , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Glucagón/sangre , Animales , Glucagón/metabolismo , Masculino , Ratas , Ratas Wistar
20.
Eur J Neurosci ; 17(2): 221-8, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12542658

RESUMEN

The suprachiasmatic nucleus (SCN) controls the circadian rhythm of melatonin synthesis in the mammalian pineal gland by a multisynaptic pathway including, successively, preautonomic neurons of the paraventricular nucleus (PVN), sympathetic preganglionic neurons in the spinal cord and noradrenergic neurons of the superior cervical ganglion (SCG). In order to clarify the role of each of these structures in the generation of the melatonin synthesis rhythm, we first investigated the day- and night-time capacity of the rat pineal gland to produce melatonin after bilateral SCN lesions, PVN lesions or SCG removal, by measurements of arylalkylamine N-acetyltransferase (AA-NAT) gene expression and pineal melatonin content. In addition, we followed the endogenous 48 h-pattern of melatonin secretion in SCN-lesioned vs. intact rats, by microdialysis in the pineal gland. Corticosterone content was measured in the same dialysates to assess the SCN lesions effectiveness. All treatments completely eliminated the day/night difference in melatonin synthesis. In PVN-lesioned and ganglionectomised rats, AA-NAT levels and pineal melatonin content were low (i.e. 12% of night-time control levels) for both day- and night-time periods. In SCN-lesioned rats, AA-NAT levels were intermediate (i.e. 30% of night-time control levels) and the 48-h secretion of melatonin presented constant levels not exceeding 20% of night-time control levels. The present results show that ablation of the SCN not only removes an inhibitory input but also a stimulatory input to the melatonin rhythm generating system. Combination of inhibitory and stimulatory SCN outputs could be of a great interest for the mechanism of adaptation to day-length (i.e. adaptation to seasons).


Asunto(s)
Arilamina N-Acetiltransferasa/metabolismo , Ritmo Circadiano/fisiología , Melatonina/biosíntesis , Núcleo Supraquiasmático/fisiología , Animales , Arilamina N-Acetiltransferasa/genética , Corticosterona/análisis , Corticosterona/biosíntesis , Ganglionectomía , Inmunohistoquímica , Hibridación in Situ , Masculino , Melatonina/análisis , Microdiálisis , Núcleo Hipotalámico Paraventricular/lesiones , Núcleo Hipotalámico Paraventricular/fisiología , Glándula Pineal/metabolismo , ARN Mensajero/análisis , Radioinmunoensayo , Ratas , Ratas Wistar , Ganglio Cervical Superior/fisiología , Ganglio Cervical Superior/cirugía , Núcleo Supraquiasmático/lesiones , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA