Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1259844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779900

RESUMEN

Like most eukaryotes, the pre-metazoan social amoeba Dictyostelium depends on the SCF (Skp1/cullin-1/F-box protein) family of E3 ubiquitin ligases to regulate its proteome. In Dictyostelium, starvation induces a transition from unicellular feeding to a multicellular slug that responds to external signals to culminate into a fruiting body containing terminally differentiated stalk and spore cells. These transitions are subject to regulation by F-box proteins and O2-dependent posttranslational modifications of Skp1. Here we examine in greater depth the essential role of FbxwD and Vwa1, an intracellular vault protein inter-alpha-trypsin (VIT) and von Willebrand factor-A (vWFA) domain containing protein that was found in the FbxwD interactome by co-immunoprecipitation. Reciprocal co-IPs using gene-tagged strains confirmed the interaction and similar changes in protein levels during multicellular development suggested co-functioning. FbxwD overexpression and proteasome inhibitors did not affect Vwa1 levels suggesting a non-substrate relationship. Forced FbxwD overexpression in slug tip cells where it is normally enriched interfered with terminal cell differentiation by a mechanism that depended on its F-box and RING domains, and on Vwa1 expression itself. Whereas vwa1-disruption alone did not affect development, overexpression of either of its three conserved domains arrested development but the effect depended on Vwa1 expression. Based on structure predictions, we propose that the Vwa1 domains exert their negative effect by artificially activating Vwa1 from an autoinhibited state, which in turn imbalances its synergistic function with FbxwD. Autoinhibition or homodimerization might be relevant to the poorly understood tumor suppressor role of the evolutionarily related VWA5A/BCSC-1 in humans.

2.
Gynecol Oncol ; 171: 67-75, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36827840

RESUMEN

OBJECTIVE: Detection of lymph node metastases in cervical cancer patients is important for guiding treatment decisions, however accuracies of current detection methods are limited. We evaluated associations of abnormal glycosylation, represented by Tn and STn antigens on mucin (MUC) proteins, in primary tumor specimens with lymph node metastasis or recurrence of cervical cancer patients. METHODS: Surgical specimens were prospectively collected from 139 patients with locally-advanced cervical cancer undergoing lymphadenectomy enrolled in a nation-wide clinical trial (NCT00460356). Of these patients, 133 had primary cervix tumor, 67 had pelvic lymph node (PLN) and 28 had para-aortic lymph node (PALN) specimens. Fixed tissue serial sections were immunohistochemically stained for Tn, STn, MUC1 or MUC4. Neuraminidase was used to validate Tn versus STn antibody specificity. Stain scores were compared with clinical characteristics. RESULTS: Primary tumor STn expression above the median was associated with negative PLN status (p-value: 0.0387; odds ratio 0.439, 95% CI: 0.206 to 0.935). PLN had higher STn compared to primary tumor, while primary tumor had higher MUC1 compared to PALN, and MUC4 compared to PALN or PLN (p = 0.017, p = 0.011, p = 0.016 and p < 0.001, respectively). Tn and STn expression correlated in primary tumor, PALN, and PLN, Tn and MUC1 expression correlated in primary tumors only (Spearman correlation coefficient [r] = 0.301, r = 0.686, r = 0.603 and r = 0.249, respectively). CONCLUSIONS: STn antigen expression in primary cervical tumors is a candidate biomarker for guiding treatment decisions and for mechanistic involvement in PLN metastases.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/patología , Escisión del Ganglio Linfático , Ganglios Linfáticos/cirugía , Ganglios Linfáticos/patología , Pelvis/patología
3.
Glycobiology ; 33(3): 225-244, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36250576

RESUMEN

O-GlcNAcylation is a prominent modification of nuclear and cytoplasmic proteins in animals and plants and is mediated by a single O-GlcNAc transferase (OGT). Spindly (Spy), a paralog of OGT first discovered in higher plants, has an ortholog in the apicomplexan parasite Toxoplasma gondii, and both enzymes are now recognized as O-fucosyltransferases (OFTs). Here we investigate the evolution of spy-like genes and experimentally confirm OFT activity in the social amoeba Dictyostelium-a protist that is more related to fungi and metazoa. Immunofluorescence probing with the fucose-specific Aleuria aurantia lectin (AAL) and biochemical cell fractionation combined with western blotting suggested the occurrence of nucleocytoplasmic fucosylation. The absence of reactivity in mutants deleted in spy or gmd (unable to synthesize GDP-Fuc) suggested monofucosylation mediated by Spy. Genetic ablation of the modE locus, previously predicted to encode a GDP-fucose transporter, confirmed its necessity for fucosylation in the secretory pathway but not for the nucleocytoplasmic proteins. Affinity capture of these proteins combined with mass spectrometry confirmed monofucosylation of Ser and Thr residues of several known nucleocytoplasmic proteins. As in Toxoplasma, the Spy OFT was required for optimal proliferation of Dictyostelium under laboratory conditions. These findings support a new phylogenetic analysis of OGT and OFT evolution that indicates their occurrence in the last eukaryotic common ancestor but mostly complementary presence in its eukaryotic descendants with the notable exception that both occur in red algae and plants. Their generally exclusive expression, high degree of conservation, and shared monoglycosylation targets suggest overlapping roles in physiological regulation.


Asunto(s)
Dictyostelium , Fucosiltransferasas , Animales , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Dictyostelium/genética , Fucosa/metabolismo , Filogenia , Bacterias/metabolismo , N-Acetilglucosaminiltransferasas/genética
4.
J Biol Chem ; 298(9): 102305, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35933019

RESUMEN

E3-SCF (Skp1/cullin-1/F-box protein) polyubiquitin ligases activate the proteasomal degradation of over a thousand proteins, but the evolutionary diversification of the F-box protein (FBP) family of substrate receptor subunits has challenged their elucidation in protists. Here, we expand the FBP candidate list in the social amoeba Dictyostelium and show that the Skp1 interactome is highly remodeled as cells transition from growth to multicellular development. Importantly, a subset of candidate FBPs was less represented when the posttranslational hydroxylation and glycosylation of Skp1 was abrogated by deletion of the O2-sensing Skp1 prolyl hydroxylase PhyA. A role for this Skp1 modification for SCF activity was indicated by partial rescue of development, which normally depends on high O2 and PhyA, of phyA-KO cells by proteasomal inhibitors. Further examination of two FBPs, FbxwD and the Jumonji C protein JcdI, suggested that Skp1 was substituted by other factors in phyA-KO cells. Although a double-KO of jcdI and its paralog jcdH did not affect development, overexpression of JcdI increased its sensitivity to O2. JcdI, a nonheme dioxygenase shown to have physiological O2 dependence, is conserved across protists with its F-box and other domains, and is related to the human oncogene JmjD6. Sensitization of JcdI-overexpression cells to O2 depended on its dioxygenase activity and other domains, but not its F-box, which may however be the mediator of its reduced levels in WT relative to Skp1 modification mutant cells. The findings suggest that activation of JcdI by O2 is tempered by homeostatic downregulation via PhyA and association with Skp1.


Asunto(s)
Amoeba , Dictyostelium , Histona Demetilasas con Dominio de Jumonji , Proteínas Quinasas Asociadas a Fase-S , Proteínas Ligasas SKP Cullina F-box , Amoeba/enzimología , Amoeba/genética , Dictyostelium/enzimología , Dictyostelium/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo
5.
J Biol Chem ; 296: 100039, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33158988

RESUMEN

Once considered unusual, nucleocytoplasmic glycosylation is now recognized as a conserved feature of eukaryotes. While in animals, O-GlcNAc transferase (OGT) modifies thousands of intracellular proteins, the human pathogen Toxoplasma gondii transfers a different sugar, fucose, to proteins involved in transcription, mRNA processing, and signaling. Knockout experiments showed that TgSPY, an ortholog of plant SPINDLY and paralog of host OGT, is required for nuclear O-fucosylation. Here we verify that TgSPY is the nucleocytoplasmic O-fucosyltransferase (OFT) by 1) complementation with TgSPY-MYC3, 2) its functional dependence on amino acids critical for OGT activity, and 3) its ability to O-fucosylate itself and a model substrate and to specifically hydrolyze GDP-Fuc. While many of the endogenous proteins modified by O-Fuc are important for tachyzoite fitness, O-fucosylation by TgSPY is not essential. Growth of Δspy tachyzoites in fibroblasts is modestly affected, despite marked reductions in the levels of ectopically expressed proteins normally modified with O-fucose. Intact TgSPY-MYC3 localizes to the nucleus and cytoplasm, whereas catalytic mutants often displayed reduced abundance. Δspy tachyzoites of a luciferase-expressing type II strain exhibited infection kinetics in mice similar to wild-type but increased persistence in the chronic brain phase, potentially due to an imbalance of regulatory protein levels. The modest changes in parasite fitness in vitro and in mice, despite profound effects on reporter protein accumulation, and the characteristic punctate localization of O-fucosylated proteins suggest that TgSPY controls the levels of proteins to be held in reserve for response to novel stresses.


Asunto(s)
Núcleo Celular/enzimología , Citosol/enzimología , Fucosiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Virulencia , Animales , Fucosiltransferasas/genética , Ratones , Mutación , Proteínas Protozoarias/genética
6.
J Biol Chem ; 295(27): 9223-9243, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32414843

RESUMEN

Skp1, a subunit of E3 Skp1/Cullin-1/F-box protein ubiquitin ligases, is modified by a prolyl hydroxylase that mediates O2 regulation of the social amoeba Dictyostelium and the parasite Toxoplasma gondii The full effect of hydroxylation requires modification of the hydroxyproline by a pentasaccharide that, in Dictyostelium, influences Skp1 structure to favor assembly of Skp1/F-box protein subcomplexes. In Toxoplasma, the presence of a contrasting penultimate sugar assembled by a different glycosyltransferase enables testing of the conformational control model. To define the final sugar and its linkage, here we identified the glycosyltransferase that completes the glycan and found that it is closely related to glycogenin, an enzyme that may prime glycogen synthesis in yeast and animals. However, the Toxoplasma enzyme catalyzes formation of a Galα1,3Glcα linkage rather than the Glcα1,4Glcα linkage formed by glycogenin. Kinetic and crystallographic experiments showed that the glycosyltransferase Gat1 is specific for Skp1 in Toxoplasma and also in another protist, the crop pathogen Pythium ultimum The fifth sugar is important for glycan function as indicated by the slow-growth phenotype of gat1Δ parasites. Computational analyses indicated that, despite the sequence difference, the Toxoplasma glycan still assumes an ordered conformation that controls Skp1 structure and revealed the importance of nonpolar packing interactions of the fifth sugar. The substitution of glycosyltransferases in Toxoplasma and Pythium by an unrelated bifunctional enzyme that assembles a distinct but structurally compatible glycan in Dictyostelium is a remarkable case of convergent evolution, which emphasizes the importance of the terminal α-galactose and establishes the phylogenetic breadth of Skp1 glycoregulation.


Asunto(s)
Galactosa/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Dictyostelium/metabolismo , Proteínas F-Box/metabolismo , Glucosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Hidroxilación , Hidroxiprolina/metabolismo , Filogenia , Procolágeno-Prolina Dioxigenasa/genética , Prolil Hidroxilasas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/fisiología , Toxoplasma/metabolismo
7.
Biochemistry ; 59(15): 1527-1536, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32227851

RESUMEN

Skp1 is an adapter that links F-box proteins to cullin-1 in the Skp1/cullin-1/F-box (SCF) protein family of E3 ubiquitin ligases that targets specific proteins for polyubiquitination and subsequent protein degradation. Skp1 from the amoebozoan Dictyostelium forms a stable homodimer in vitro with a Kd of 2.5 µM as determined by sedimentation velocity studies yet is monomeric in crystal complexes with F-box proteins. To investigate the molecular basis for the difference, we determined the solution NMR structure of a doubly truncated Skp1 homodimer (Skp1ΔΔ). The solution structure of the Skp1ΔΔ dimer reveals a 2-fold symmetry with an interface that buries ∼750 Å2 of predominantly hydrophobic surface. The dimer interface overlaps with subsite 1 of the F-box interaction area, explaining why only the Skp1 monomer binds F-box proteins (FBPs). To confirm the model, Rosetta was used to predict amino acid substitutions that might disrupt the dimer interface, and the F97E substitution was chosen to potentially minimize interference with F-box interactions. A nearly full-length version of Skp1 with this substitution (Skp1ΔF97E) behaved as a stable monomer at concentrations of ≤500 µM and actively bound a model FBP, mammalian Fbs1, which suggests that the dimeric state is not required for Skp1 to carry out a basic biochemical function. Finally, Skp1ΔF97E is expected to serve as a monomer model for high-resolution NMR studies previously hindered by dimerization.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Sitios de Unión , Dimerización , Proteínas F-Box/química , Humanos , Modelos Moleculares , Proteínas Quinasas Asociadas a Fase-S/química
8.
Glycobiology ; 29(10): 705-714, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31281925

RESUMEN

Skp1 is hydroxylated by an O2-dependent prolyl hydroxylase (PhyA) that contributes to O2-sensing in the social amoeba Dictyostelium and the mammalian pathogen Toxoplasma gondii. HO-Skp1 is subject to glycosylation and the resulting pentasaccharide affects Skp1 conformation in a way that influences association of Skp1 with F-box proteins, and potentially the assembly of E3(SCF) ubiquitin ligase complexes that mediate the polyubiquitination of target proteins that are degraded in the 26S-proteasome. To investigate the conservation and specificity of these modifications, we analyzed proteins from the oomycete Pythium ultimum, an important crop plant pathogen. Putative coding sequences for Pythium's predicted PhyA and first glycosyltransferase in the predicted five-enzyme pathway, a GlcNAc-transferase (Gnt1), predict a bifunctional enzyme (Phgt) that, when expressed in Dictyostelium, rescued a knockout of phyA but not gnt1. Though recombinant Phgt was also unable to glycosylate Dictyostelium HO-Skp1, it could hydrolyze UDP-GlcNAc and modify a synthetic hydroxypeptide from Dictyostelium Skp1. Pythium encodes two highly similar Skp1 isoforms, but only Skp1A was efficiently hydroxylated and glycosylated in vitro. While kinetic analysis revealed no evidence for processive processing of Skp1, the physical linkage of the two activities implies dedication to Skp1 in vivo. These findings indicate a widespread occurrence of the Skp1 modification pathway across protist phylogeny, suggest that both Gnt1 and PhyA are specific for Skp1 and indicate that the second Skp1 provides a bypass mechanism for O2-regulation in Pythium and other protists that conserve this gene.


Asunto(s)
N-Acetilglucosaminiltransferasas/genética , Prolil Hidroxilasas/genética , Pythium/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Citoplasma/enzimología , Citoplasma/genética , Dictyostelium/genética , Proteínas F-Box/genética , Glucosamina/análogos & derivados , Glucosamina/genética , Glucosamina/metabolismo , Glicosilación , Hidroxilación/genética , N-Acetilglucosaminiltransferasas/metabolismo , Oxígeno/metabolismo , Prolil Hidroxilasas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pythium/patogenicidad , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Ubiquitinación/genética
9.
mBio ; 10(2)2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914506

RESUMEN

As the protozoan parasite Toxoplasma gondii disseminates through its host, it responds to environmental changes by altering its gene expression, metabolism, and other processes. Oxygen is one variable environmental factor, and properly adapting to changes in oxygen levels is critical to prevent the accumulation of reactive oxygen species and other cytotoxic factors. Thus, oxygen-sensing proteins are important, and among these, 2-oxoglutarate-dependent prolyl hydroxylases are highly conserved throughout evolution. Toxoplasma expresses two such enzymes, TgPHYa, which regulates the SCF-ubiquitin ligase complex, and TgPHYb. To characterize TgPHYb, we created a Toxoplasma strain that conditionally expresses TgPHYb and report that TgPHYb is required for optimal parasite growth under normal growth conditions. However, exposing TgPHYb-depleted parasites to extracellular stress leads to severe decreases in parasite invasion, which is likely due to decreased abundance of parasite adhesins. Adhesin protein abundance is reduced in TgPHYb-depleted parasites as a result of inactivation of the protein synthesis elongation factor eEF2 that is accompanied by decreased rates of translational elongation. In contrast to most other oxygen-sensing proteins that mediate cellular responses to low O2, TgPHYb is specifically required for parasite growth and protein synthesis at high, but not low, O2 tensions as well as resistance to reactive oxygen species. In vivo, reduced TgPHYb expression leads to lower parasite burdens in oxygen-rich tissues. Taken together, these data identify TgPHYb as a sensor of high O2 levels, in contrast to TgPHYa, which supports the parasite at low O2IMPORTANCE Because oxygen plays a key role in the growth of many organisms, cells must know how much oxygen is available. O2-sensing proteins are therefore critical cellular factors, and prolyl hydroxylases are the best-studied type of O2-sensing proteins. In general, prolyl hydroxylases trigger cellular responses to decreased oxygen availability. But, how does a cell react to high levels of oxygen? Using the protozoan parasite Toxoplasma gondii, we discovered a prolyl hydroxylase that allows the parasite to grow at elevated oxygen levels and does so by regulating protein synthesis. Loss of this enzyme also reduces parasite burden in oxygen-rich tissues, indicating that sensing both high and low levels of oxygen impacts the growth and physiology of Toxoplasma.


Asunto(s)
Regulación de la Expresión Génica , Estrés Oxidativo , Extensión de la Cadena Peptídica de Translación , Prolil Hidroxilasas/metabolismo , Estrés Fisiológico , Toxoplasma/enzimología , Toxoplasma/fisiología , Moléculas de Adhesión Celular/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo
10.
J Biol Chem ; 292(45): 18644-18659, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28928220

RESUMEN

Skp1 is a subunit of the SCF (Skp1/Cullin 1/F-box protein) class of E3 ubiquitin ligases that are important for eukaryotic protein degradation. Unlike its animal counterparts, Skp1 from Toxoplasma gondii is hydroxylated by an O2-dependent prolyl-4-hydroxylase (PhyA), and the resulting hydroxyproline can subsequently be modified by a five-sugar chain. A similar modification is found in the social amoeba Dictyostelium, where it regulates SCF assembly and O2-dependent development. Homologous glycosyltransferases assemble a similar core trisaccharide in both organisms, and a bifunctional α-galactosyltransferase from CAZy family GT77 mediates the addition of the final two sugars in Dictyostelium, generating Galα1, 3Galα1,3Fucα1,2Galß1,3GlcNAcα1-. Here, we found that Toxoplasma utilizes a cytoplasmic glycosyltransferase from an ancient clade of CAZy family GT32 to catalyze transfer of the fourth sugar. Catalytically active Glt1 was required for the addition of the terminal disaccharide in cells, and cytosolic extracts catalyzed transfer of [3H]glucose from UDP-[3H]glucose to the trisaccharide form of Skp1 in a glt1-dependent fashion. Recombinant Glt1 catalyzed the same reaction, confirming that it directly mediates Skp1 glucosylation, and NMR demonstrated formation of a Glcα1,3Fuc linkage. Recombinant Glt1 strongly preferred the full core trisaccharide attached to Skp1 and labeled only Skp1 in glt1Δ extracts, suggesting specificity for Skp1. glt1-knock-out parasites exhibited a growth defect not rescued by catalytically inactive Glt1, indicating that the glycan acts in concert with the first enzyme in the pathway, PhyA, in cells. A genomic bioinformatics survey suggested that Glt1 belongs to the ancestral Skp1 glycosylation pathway in protists and evolved separately from related Golgi-resident GT32 glycosyltransferases.


Asunto(s)
Citoplasma/enzimología , Glucosiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Toxoplasma/metabolismo , Sustitución de Aminoácidos , Proliferación Celular , Biología Computacional , Citoplasma/metabolismo , Eliminación de Gen , Técnicas de Inactivación de Genes , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glicosilación , Mutación , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Filogenia , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Estereoisomerismo , Especificidad por Sustrato , Toxoplasma/citología , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo
11.
J Biol Chem ; 291(36): 18991-9005, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27402828

RESUMEN

All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth.


Asunto(s)
Apolipoproteína A-I/biosíntesis , Proteínas Aviares/biosíntesis , Coroides/metabolismo , Proteínas del Ojo/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Receptores de Ácido Retinoico/biosíntesis , Tretinoina/farmacología , Animales , Apolipoproteína A-I/química , Proteínas Aviares/química , Pollos , Coroides/química , Proteínas del Ojo/química , Receptores de Ácido Retinoico/química , Tretinoina/química
12.
J Biol Chem ; 291(9): 4268-80, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26719340

RESUMEN

Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.


Asunto(s)
Glicosiltransferasas/metabolismo , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Toxoplasma/fisiología , Secuencia de Aminoácidos , Células Cultivadas , Secuencia Conservada , Evolución Molecular , Eliminación de Gen , Glicopéptidos/química , Glicopéptidos/metabolismo , Glicosilación , Humanos , Hidroxiprolina/metabolismo , Datos de Secuencia Molecular , Oligosacáridos/química , Oligosacáridos/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/genética , Alineación de Secuencia , Espectrometría de Masas en Tándem , Toxoplasma/enzimología , Toxoplasma/crecimiento & desarrollo
13.
Glycoconj J ; 32(6): 345-59, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25987342

RESUMEN

Multiple species of cellular slime mold (CSM) amoebae share overlapping subterranean environments near the soil surface. Despite similar life-styles, individual species form independent starvation-induced fruiting bodies whose spores can renew the life cycle. N-glycans associated with the cell surface glycocalyx have been predicted to contribute to interspecific avoidance, resistance to pathogens, and prey preference. N-glycans from five CSM species that diverged 300-600 million years ago and whose genomes have been sequenced were fractionated into neutral and acidic pools and profiled by MALDI-TOF-MS. Glycan structure models were refined using linkage specific antibodies, exoglycosidase digestions, MALDI-MS/MS, and chromatographic studies. Amoebae of the type species Dictyostelium discoideum express modestly trimmed high mannose N-glycans variably modified with core α3-linked Fuc and peripherally decorated with 0-2 residues each of ß-GlcNAc, Fuc, methylphosphate and/or sulfate, as reported previously. Comparative analyses of D. purpureum, D. fasciculatum, Polysphondylium pallidum, and Actyostelium subglobosum revealed that each displays a distinctive spectrum of high-mannose species with quantitative variations in the extent of these modifications, and qualitative differences including retention of Glc, mannose methylation, and absence of a peripheral GlcNAc, fucosylation, or sulfation. Starvation-induced development modifies the pattern in all species but, except for universally observed increased mannose-trimming, the N-glycans do not converge to a common profile. Correlations with glycogene repertoires will enable future reverse genetic studies to eliminate N-glycomic differences to test their functions in interspecific relations and pathogen evasion.


Asunto(s)
Amoeba/metabolismo , Evolución Molecular , Glicómica , Polisacáridos/metabolismo , Aniones , Fucosa/metabolismo , Glucosamina/metabolismo , Glicoproteínas/metabolismo , Manosa/metabolismo , Metilación , Organofosfatos , Filogenia , Sulfatos/metabolismo
14.
Mol Cell Proteomics ; 14(1): 66-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25341530

RESUMEN

O(2) sensing in diverse protozoa depends on the prolyl 4 hydroxylation of Skp1 and modification of the resulting hydroxyproline with a series of five sugars. In yeast, plants, and animals, Skp1 is associated with F-box proteins. The Skp1-F-box protein heterodimer can, for many F-box proteins, dock onto cullin-1 en route to assembly of the Skp1-cullin-1-F-box protein-Rbx1 subcomplex of E3(SCF)Ub ligases. E3(SCF)Ub ligases conjugate Lys48-polyubiquitin chains onto targets bound to the substrate receptor domains of F-box proteins, preparing them for recognition by the 26S proteasome. In the social amoeba Dictyostelium, we found that O(2) availability was rate-limiting for the hydroxylation of newly synthesized Skp1. To investigate the effect of reduced hydroxylation, we analyzed knockout mutants of the Skp1 prolyl hydroxylase and each of the Skp1 glycosyltransferases. Proteomic analysis of co-immunoprecipitates showed that wild-type cells able to fully glycosylate Skp1 had a greater abundance of an SCF complex containing the cullin-1 homolog CulE and FbxD, a newly described WD40-type F-box protein, than the complexes that predominate in cells defective in Skp1 hydroxylation or glycosylation. Similarly, the previously described FbxA-Skp1CulA complex was also more abundant in glycosylation-competent cells. The CulE interactome also included higher levels of proteasomal regulatory particles when Skp1 was glycosylated, suggesting increased activity consistent with greater association with F-box proteins. Finally, the interactome of FLAG-FbxD was modified when it harbored an F-box mutation that compromised Skp1 binding, consistent with an effect on the abundance of potential substrate proteins. We propose that O(2)-dependent posttranslational glycosylation of Skp1 promotes association with F-box proteins and their engagement in functional E3(SCF)Ub ligases that regulate O(2)-dependent developmental progression.


Asunto(s)
Dictyostelium/metabolismo , Proteínas F-Box/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Glicosilación , Hidroxilación , Oxígeno/metabolismo
15.
Eukaryot Cell ; 13(10): 1312-27, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25084865

RESUMEN

All life cycle stages of the protozoan parasite Trypanosoma cruzi are enveloped by mucin-like glycoproteins which, despite major changes in their polypeptide cores, are extensively and similarly O-glycosylated. O-Glycan biosynthesis is initiated by the addition of αGlcNAc to Thr in a reaction catalyzed by Golgi UDP-GlcNAc:polypeptide O-α-N-acetyl-d-glucosaminyltransferases (ppαGlcNAcTs), which are encoded by TcOGNT1 and TcOGNT2. We now directly show that TcOGNT2 is associated with the Golgi apparatus of the epimastigote stage and is markedly downregulated in both differentiated metacyclic trypomastigotes (MCTs) and cell culture-derived trypomastigotes (TCTs). The significance of downregulation was examined by forced continued expression of TcOGNT2, which resulted in a substantial increase of TcOGNT2 protein levels but only modestly increased ppαGlcNAcT activity in extracts and altered cell surface glycosylation in TCTs. Constitutive TcOGNT2 overexpression had no discernible effect on proliferating epimastigotes but negatively affected production of both types of trypomastigotes. MCTs differentiated from epimastigotes at a low frequency, though they were apparently normal based on morphological and biochemical criteria. However, these MCTs exhibited an impaired ability to produce amastigotes and TCTs in cell culture monolayers, most likely due to a reduced infection frequency. Remarkably, inhibition of MCT production did not depend on TcOGNT2 catalytic activity, whereas TCT production was inhibited only by active TcOGNT2. These findings indicate that TcOGNT2 downregulation is important for proper differentiation of MCTs and functioning of TCTs and that TcOGNT2 regulates these functions by using both catalytic and noncatalytic mechanisms.


Asunto(s)
Glicoproteínas/genética , Mucinas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/biosíntesis , Aparato de Golgi/enzimología , Estadios del Ciclo de Vida/genética , Mucinas/genética , Péptidos/genética , Péptidos/metabolismo , Polisacáridos/biosíntesis , Proteínas Protozoarias/genética , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/crecimiento & desarrollo
16.
J Biol Chem ; 287(30): 25098-110, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22648409

RESUMEN

In diverse types of organisms, cellular hypoxic responses are mediated by prolyl 4-hydroxylases that use O(2) and α-ketoglutarate as substrates to hydroxylate conserved proline residues in target proteins. Whereas in metazoans these enzymes control the stability of the HIFα family of transcription factor subunits, the Dictyostelium enzyme (DdPhyA) contributes to O(2) regulation of development by a divergent mechanism involving hydroxylation and subsequent glycosylation of DdSkp1, an adaptor subunit in E3(SCF) ubiquitin ligases. Sequences related to DdPhyA, DdSkp1, and the glycosyltransferases that cap Skp1 hydroxyproline occur also in the genomes of Toxoplasma and other protists, suggesting that this O(2) sensing mechanism may be widespread. Here we show by disruption of the TgphyA locus that this enzyme is required for Skp1 glycosylation in Toxoplasma and that disrupted parasites grow slowly at physiological O(2) levels. Conservation of cellular function was tested by expression of TgPhyA in DdphyA-null cells. Simple gene replacement did not rescue Skp1 glycosylation, whereas overexpression not only corrected Skp1 modification but also restored the O(2) requirement to a level comparable to that of overexpressed DdPhyA. Bacterially expressed TgPhyA protein can prolyl hydroxylate both Toxoplasma and Dictyostelium Skp1s. Kinetic analyses showed that TgPhyA has similar properties to DdPhyA, including a superimposable dependence on the concentration of its co-substrate α-ketoglutarate. Remarkably, however, TgPhyA had a significantly higher apparent affinity for O(2). The findings suggest that Skp1 hydroxylation by PhyA is a conserved process among protists and that this biochemical pathway may indirectly sense O(2) by detecting the levels of O(2)-regulated metabolites such as α-ketoglutarate.


Asunto(s)
Dictyostelium/metabolismo , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Toxoplasma/metabolismo , Factores de Transcripción/metabolismo , Dictyostelium/genética , Genoma de Protozoos/fisiología , Glicosilación , Hidroxilación/fisiología , Ácidos Cetoglutáricos/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Proteínas Protozoarias/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Toxoplasma/genética , Factores de Transcripción/genética
17.
J Biol Chem ; 287(3): 2006-16, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22128189

RESUMEN

Cytoplasmic prolyl 4-hydroxylases (PHDs) have a primary role in O(2) sensing in animals via modification of the transcriptional factor subunit HIFα, resulting in its polyubiquitination by the E3(VHL)ubiquitin (Ub) ligase and degradation in the 26 S proteasome. Previously thought to be restricted to animals, a homolog (P4H1) of HIFα-type PHDs is expressed in the social amoeba Dictyostelium where it also exhibits characteristics of an O(2) sensor for development. Dictyostelium lacks HIFα, and P4H1 modifies a different protein, Skp1, an adaptor of the SCF class of E3-Ub ligases related to the E3(VHL)Ub ligase that targets animal HIFα. Normally, the HO-Skp1 product of the P4H1 reaction is capped by a GlcNAc sugar that can be subsequently extended to a pentasaccharide by novel glycosyltransferases. To analyze the role of glycosylation, the Skp1 GlcNAc-transferase locus gnt1 was modified with a missense mutation to block catalysis or a stop codon to truncate the protein. Despite the accumulation of the hydroxylated form of Skp1, Skp1 was not destabilized based on metabolic labeling. However, hydroxylation alone allowed for partial correction of the high O(2) requirement of P4H1-null cells, therefore revealing both glycosylation-independent and glycosylation-dependent roles for hydroxylation. Genetic complementation of the latter function required an enzymatically active form of Gnt1. Because the effect of the gnt1 deficiency depended on P4H1, and Skp1 was the only protein labeled when the GlcNAc-transferase was restored to mutant extracts, Skp1 apparently mediates the cellular functions of both P4H1 and Gnt1. Although Skp1 stability itself is not affected by hydroxylation, its modification may affect the stability of targets of Skp1-dependent Ub ligases.


Asunto(s)
Dictyostelium/enzimología , Oxigenasas de Función Mixta/metabolismo , Oxígeno/metabolismo , Proteínas Protozoarias/metabolismo , Dictyostelium/genética , Estabilidad de Enzimas/fisiología , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hidroxilación/fisiología , Oxigenasas de Función Mixta/genética , Proteínas Protozoarias/genética
18.
Genome Biol ; 12(2): R20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21356102

RESUMEN

BACKGROUND: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. RESULTS: We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. CONCLUSIONS: The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.


Asunto(s)
Evolución Biológica , Dictyostelium/genética , Evolución Molecular , Genoma , Genómica/métodos , Animales , Secuencia de Bases , Secuencia Conservada/genética , Transferencia de Gen Horizontal , Especiación Genética , Tamaño del Genoma , Histidina Quinasa , Humanos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Filogenia , Sintasas Poliquetidas/genética , Proteínas Quinasas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
19.
Biochemistry ; 50(10): 1700-13, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21247092

RESUMEN

The social amoeba Dictyostelium expresses a hypoxia inducible factor-α (HIFα) type prolyl 4-hydroxylase (P4H1) and an α-N-acetylglucosaminyltransferase (Gnt1) that sequentially modify proline-143 of Skp1, a subunit of the SCF (Skp1/Cullin/F-box protein) class of E3 ubiquitin ligases. Prior genetic studies have implicated Skp1 and its modification by these enzymes in O(2) regulation of development, suggesting the existence of an ancient O(2)-sensing mechanism related to modification of the transcription factor HIFα by animal prolyl 4-hydroxylases (PHDs). To better understand the role of Skp1 in P4H1-dependent O(2) signaling, biochemical and biophysical studies were conducted to characterize the reaction product and the basis of Skp1 substrate selection by P4H1 and Gnt1. (1)H NMR demonstrated formation of 4(trans)-hydroxyproline as previously found for HIFα, and highly purified P4H1 was inhibited by Krebs cycle intermediates and other compounds that affect animal P4Hs. However, in contrast to hydroxylation of HIFα by PHDs, P4H1 depended on features of full-length Skp1, based on truncation, mutagenesis, and competitive inhibition studies. These features are conserved during animal evolution, as even mammalian Skp1, which lacks the target proline, became a good substrate upon its restoration. P4H1 recognition may depend on features conserved for SCF complex formation as heterodimerization with an F-box protein blocked Skp1 hydroxylation. The hydroxyproline-capping enzyme Gnt1 exhibited similar requirements for Skp1 as a substrate. These and other findings support a model in which the protist P4H1 conditionally hydroxylates Skp1 of E3(SCF)ubiquitin ligases to control half-lives of multiple targets, rather than the mechanism of animal PHDs where individual proteins are hydroxylated leading to ubiquitination by the evolutionarily related E3(VBC)ubiquitin ligases.


Asunto(s)
Citosol/enzimología , Dictyostelium/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Animales , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Ligasas SKP Cullina F-box/química , Especificidad por Sustrato
20.
Dev Biol ; 349(2): 283-95, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20969846

RESUMEN

O(2) regulates multicellular development of the social amoeba Dictyostelium, suggesting it may serve as an important cue in its native soil environment. Dictyostelium expresses an HIFα-type prolyl 4-hydroxylase (P4H1) whose levels affect the O(2)-threshold for culmination implicating it as a direct O(2)-sensor, as in animals. But Dictyostelium lacks HIFα, a mediator of animal prolyl 4-hydroxylase signaling, and P4H1 can hydroxylate Pro143 of Skp1, a subunit of E3(SCF)ubiquitin-ligases. Skp1 hydroxyproline then becomes the target of five sequential glycosyltransferase reactions that modulate the O(2)-signal. Here we show that genetically induced changes in Skp1 levels also affect the O(2)-threshold, in opposite direction to that of the modification enzymes suggesting that the latter reduce Skp1 activity. Consistent with this, overexpressed Skp1 is poorly hydroxylated and Skp1 is the only P4H1 substrate detectable in extracts. Effects of Pro143 mutations, and of combinations of Skp1 and enzyme level perturbations, are consistent with pathway modulation of Skp1 activity. However, some effects were not mirrored by changes in modification of the bulk Skp1 pool, implicating a Skp1 subpopulation and possibly additional unknown factors. Altered Skp1 levels also affected other developmental transitions in a modification-dependent fashion. Whereas hydroxylation of animal HIFα results in its polyubiquitination and proteasomal degradation, Dictyostelium Skp1 levels were little affected by its modification status. These data indicate that Skp1 and possibly E3(SCF)ubiquitin-ligase activity modulate O(2)-dependent culmination and other developmental processes, and at least partially mediate the action of the hydroxylation/glycosylation pathway in O(2)-sensing.


Asunto(s)
Dictyostelium/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolina/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Western Blotting , Glicosilación , Hidroxilación , Proteínas Luminiscentes , Espectrometría de Masas , Mutación/genética , Prolina/genética , Proteínas Quinasas Asociadas a Fase-S/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...