Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1685: 463584, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36323099

RESUMEN

Comprehensive two-dimensional liquid chromatography (LC×LC) can provide enhanced resolving power and higher peak capacities for the separation of complex samples. The transfer of fractions of too high eluotropic strength from the first dimension, however, can lead to peak broadening. This process is related to the column dimensions, the flow rates, mobile phase compositions, and stationary phase compatibility. Temperature-responsive LC (TRLC) uses a smart polymer coupled to silica (poly(N-isopropylacrylamide), pNIPAAm), that exhibits a change in polarity upon modest variations in column temperature. Retention is thus modulated by temperature and not by organic solvents, allowing for the use of purely aqueous mobile phases. As these aqueous mobile phases depict a very low eluotropic strength on a reversed-phase column, it facilitates band refocusing at the second-dimension column head in TRLC×RPLC. One of the remaining obstacles of TRLC is the long analysis time. In this research, the potential of this column combination in terms of analyte refocusing will be exploited. First, it is shown that upwards flow gradients can be implemented in the first dimension of TRLC×RPLC. As the flow in the second dimension is maintained at a constant level, a first-dimension flow gradient does not lead to impaired sensitivity and has no negative effects on the resulting peak size. Then, the novel combination of a downwards temperature gradient with an upwards flow gradient will be introduced to speed up the analyses further. Analysis time was, depending on the method used, reduced by 36-54%, as demonstrated by the analysis of mixtures of food additives, phenolic compounds, and small molecule pharmaceuticals mimicking impurity analysis at a 0.05% level.


Asunto(s)
Cromatografía de Fase Inversa , Fenoles , Cromatografía Liquida/métodos , Temperatura , Cromatografía de Fase Inversa/métodos , Fenoles/química , Solventes , Agua
2.
Anal Chem ; 94(48): 16728-16737, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36440685

RESUMEN

In comprehensive two-dimensional liquid chromatography (LC × LC), solvents of high eluotropic strength are frequently used in the first dimension (1D), which lead to peak broadening in the second dimension (2D). In the majority of the current LC × LC column combinations, analytes are less than optimally refocused upon transfer to the second column, which negatively affects sensitivity. Furthermore, the typical combination of 1 or 2.1 mm columns in the 1D paired with a 3 mm (or broader) column in the 2D leads to at least a 9- or 4-fold dilution and a corresponding loss of sensitivity when using concentration-sensitive detectors. This occurs due to the enhanced radial dilution of the analytes in a broader column, while the sensitivity problem is further exacerbated in LC × LC due to the high flow operated 2D. In this paper, we introduce a solution to neutralize and inverse this dilution problem through a reconcentrating solution using temperature-responsive liquid chromatography (TRLC) in the 1D, which is a purely aqueous separation mode. Full solute refocusing at the 2D column head is thereby obtained when TRLC is combined with reversed-phase liquid chromatography (RPLC). This is shown for the combination of a 2.1 mm I.D. TRLC column with decreasing RPLC column diameters (3-2.1-1 mm) operated at the same linear velocities, hence a resulting decrease in dilution, respectively. Ultraviolet (UV) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) detection were used to determine the experimental detection limits. Sensitivity improvements with UV detection were somewhat lower than expected, but represent ∼1.5- and 3-fold sensitivity enhancement when using a 1 mm I.D. column compared to 2.1 or 3 mm I.D. columns in the 2D, respectively. This is attributed to extra-column dispersion and the poorer performance of 1 mm I.D. columns. A major benefit of the use of 1 mm I.D. columns in the 2D is that it allows split-free coupling of 2D effluent with ESI-MS (at 450 µL/min), making the coupling robust and simple. When using ESI-MS even better, albeit more variable, sensitivity enhancements were obtained on the narrower columns. The benefits of the methodology are demonstrated for paraben test solutes and for phenolic compounds in a blueberry extract by TRLC × RPLC-UV-ESI-TOF-MS.


Asunto(s)
Cromatografía de Fase Inversa , Espectrometría de Masa por Ionización de Electrospray , Temperatura , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Solventes/química
3.
Talanta ; 236: 122889, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635268

RESUMEN

Phenolic compounds are an interesting class of natural products because of their proposed contribution to health benefits of foods and beverages and as a bio-source of organic (aromatic) building blocks. Phenolic extracts from natural products are often highly complex and contain compounds covering a broad range in molecular properties. While many 1D-LC and mass spectrometric approaches have been proposed for the analysis of phenolics, this complexity inevitably leads to challenging identification and purification. New insights into the composition of phenolic extracts can be obtained through online comprehensive two-dimensional liquid chromatography (LC × LC) coupled to photodiode array and mass spectrometric detection. However, several practical hurdles must be overcome to achieve high peak capacities and to obtain robust methods with this technique. In many LC × LC configurations, refocusing of analytes at the head of the 2D column is hindered by the high eluotropic strength of the solvent transferred from the 1D to the 2D, leading to peak breakthrough or broadening. LC × LC combinations whereby a purely aqueous mobile phase is used in the 1D and RPLC is used in the 2D are unaffected by these phenomena, leading to more robust methods. In this contribution, the combination of temperature-responsive liquid chromatography (TRLC) with RPLC is used for the first time for the analysis of phenolic extracts of natural origin to illustrate the potential of this alternative combination for natural product analyses. The possibilities of the combination are investigated through analysis of wine extracts by TRLC × RPLC-DAD and TRLC × RPLC-ESI-MS.


Asunto(s)
Cromatografía de Fase Inversa , Vino , Cromatografía Liquida , Fenoles/análisis , Temperatura
4.
J Chromatogr A ; 1630: 461561, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32992220

RESUMEN

In this study, the possibilities of temperature responsive × reversed phase liquid chromatography (TRLC × RPLC) are assessed in terms of pharmaceutical impurity analysis. Due to the increased peak capacity per unit time they offer, two-dimensional LC approaches are gaining relevance for the analysis of complex drug formulations. Because the latter depicts a larger predisposition for the occurrence of an increased number of impurities, current 1D-HPLC approaches often prove insufficient. Since many LC × LC methods are limited by modulation, solvent compatibility, orthogonality, and sensitivity issues, the combination of TRLC × RPLC is explored in this work for pharmaceutical impurity analysis. As this combination of a purely aqueous separation with RPLC allows for systematic and optimization-free refocusing in the second dimension, it opens possibilities for generic LC × LC requiring minimal to no method development, in this way overcoming a major perceived contemporary hurdle of LC × LC. The approach is demonstrated with a representative mixture of 17 solutes comprising 11 corticosteroids and 6 progestogens. Orthogonality and peak capacities were assessed on three RP core-shell column selectivities (Poroshell EC-C18, phenyl-hexyl and PFP). Although the TRLC × EC-C18 combination offered somewhat better orthogonality, the combination with the PFP column proved the best for the separation at hand. Depending on the composition of the mixture, the use of full, shifted, or segmented gradients allowed facile optimization of the separation. The developed platform allowed detection of the impurities at the 0.05% level compared to a selected main compound, while also opening up possibilities for analysis of formulations comprising two active ingredients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...