Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Breast Cancer Res ; 26(1): 74, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702730

RESUMEN

The transcription factor TRPS1 is a context-dependent oncogene in breast cancer. In the mammary gland, TRPS1 activity is restricted to the luminal population and is critical during puberty and pregnancy. Its function in the resting state remains however unclear. To evaluate whether it could be a target for cancer therapy, we investigated TRPS1 function in the healthy adult mammary gland using a conditional ubiquitous depletion mouse model where long-term depletion does not affect fitness. Using transcriptomic approaches, flow cytometry and functional assays, we show that TRPS1 activity is essential to maintain a functional luminal progenitor compartment. This requires the repression of both YAP/TAZ and SRF/MRTF activities. TRPS1 represses SRF/MRTF activity indirectly by modulating RhoA activity. Our work uncovers a hitherto undisclosed function of TRPS1 in luminal progenitors intrinsically linked to mechanotransduction in the mammary gland. It may also provide new insights into the oncogenic functions of TRPS1 as luminal progenitors are likely the cells of origin of many breast cancers.


Asunto(s)
Glándulas Mamarias Animales , Proteínas Represoras , Factor de Respuesta Sérica , Células Madre , Factores de Transcripción , Animales , Femenino , Ratones , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Madre/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factor de Respuesta Sérica/metabolismo , Factor de Respuesta Sérica/genética , Humanos , Transactivadores/metabolismo , Transactivadores/genética
2.
Nat Commun ; 15(1): 3074, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594255

RESUMEN

Although DNA methylation data yields highly accurate age predictors, little is known about the dynamics of this quintessential epigenomic biomarker during lifespan. To narrow the gap, we investigate the methylation trajectories of male mouse colon at five different time points of aging. Our study indicates the existence of sudden hypermethylation events at specific stages of life. Precisely, we identify two epigenomic switches during early-to-midlife (3-9 months) and mid-to-late-life (15-24 months) transitions, separating the rodents' life into three stages. These nonlinear methylation dynamics predominantly affect genes associated with the nervous system and enrich in bivalently marked chromatin regions. Based on groups of nonlinearly modified loci, we construct a clock-like classifier STageR (STage of aging estimatoR) that accurately predicts murine epigenetic stage. We demonstrate the universality of our clock in an independent mouse cohort and with publicly available datasets.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Masculino , Animales , Ratones , Metilación de ADN/genética , Envejecimiento/genética , Longevidad , Cromatina
3.
NPJ Regen Med ; 9(1): 10, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424446

RESUMEN

Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.

4.
Oncogene ; 43(8): 578-593, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182898

RESUMEN

YAP activation in cancer is linked to poor outcomes, making it an attractive therapeutic target. Previous research focused on blocking the interaction of YAP with TEAD transcription factors. Here, we took a different approach by disrupting YAP's binding to the transcription factor B-MYB using MY-COMP, a fragment of B-MYB containing the YAP binding domain fused to a nuclear localization signal. MY-COMP induced cell cycle defects, nuclear abnormalities, and polyploidization. In an AKT and YAP-driven liver cancer model, MY-COMP significantly reduced liver tumorigenesis, highlighting the importance of the YAP-B-MYB interaction in tumor development. MY-COMP also perturbed the cell cycle progression of YAP-dependent uveal melanoma cells but not of YAP-independent cutaneous melanoma cell lines. It counteracted YAP-dependent expression of MMB-regulated cell cycle genes, explaining the observed effects. We also identified NIMA-related kinase (NEK2) as a downstream target of YAP and B-MYB, promoting YAP-driven transformation by facilitating centrosome clustering and inhibiting multipolar mitosis.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
5.
Mol Cancer ; 22(1): 196, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049829

RESUMEN

Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function drives an increase in transcription factor BASP1 which in turn represses KMT2A-fusion protein target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, synergistically reduces leukemia in human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. These data demonstrate that the immunoproteasome is a relevant therapeutic target in AML and that targeting the immunoproteasome in combination with Menin-inhibition could be a novel approach for treatment of KMT2A-r AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteómica , Humanos , Ratones , Animales , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia Mieloide Aguda/metabolismo , Factores de Transcripción/genética , Mutación , Expresión Génica
6.
Mol Ther ; 31(9): 2612-2632, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37452493

RESUMEN

Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.


Asunto(s)
MicroARNs , Rabdomiosarcoma Embrionario , Humanos , Niño , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/metabolismo , Rabdomiosarcoma Embrionario/patología , Miogenina/genética , Miogenina/metabolismo , Diferenciación Celular/genética , MicroARNs/genética , Desarrollo de Músculos/genética , Línea Celular Tumoral , Proteínas Represoras
7.
Leukemia ; 37(4): 741-750, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739348

RESUMEN

Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects need to be taken into consideration. We report on a transgenic murine model of FLT3-ITD induced disease, where Cre recombinase expression alone, and in the absence of a conditional allele, gives rise to an aggressive leukemia phenotype. Here, expression of various Cre recombinases leads to polyclonal expansion of FLT3ITD/ITD progenitor cells, induction of a differentiation block and activation of Myc-dependent gene expression programs. Our report is intended to alert the scientific community of potential risks associated with using this specific mouse model and of unexpected effects of Cre expression when investigating cooperative oncogenic mutations in murine models of cancer.


Asunto(s)
Leucemia Mieloide Aguda , Animales , Ratones , Modelos Animales de Enfermedad , Tirosina Quinasa 3 Similar a fms/genética , Duplicación de Gen , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones Transgénicos , Mutación
8.
Nat Commun ; 13(1): 5187, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057685

RESUMEN

Specific functions of the immune system are essential to protect us from infections caused by pathogens such as viruses and bacteria. However, as we age, the immune system shows a functional decline that can be attributed in large part to age-associated defects in hematopoietic stem cells (HSCs)-the cells at the apex of the immune cell hierarchy. Here, we find that the Hippo pathway coactivator TAZ is potently induced in old HSCs and protects these cells from functional decline. We identify Clca3a1 as a TAZ-induced gene that allows us to trace TAZ activity in vivo. Using CLCA3A1 as a marker, we can isolate "young-like" HSCs from old mice. Mechanistically, Taz acts as coactivator of PU.1 and to some extent counteracts the gradual loss of PU.1 expression during HSC aging. Our work thus uncovers an essential role for Taz in a previously undescribed fail-safe mechanism in aging HSCs.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas , Envejecimiento/fisiología , Animales , Células Madre Hematopoyéticas/metabolismo , Ratones
9.
Blood ; 139(7): 1080-1097, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34695195

RESUMEN

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/patología , Proteínas de Fusión Oncogénica/metabolismo , Fosfolipasa C gamma/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Animales , Autorrenovación de las Células , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Proteínas de Fusión Oncogénica/genética , Fosfolipasa C gamma/genética , Proteoma , Proteína 1 Compañera de Translocación de RUNX1/genética , Transcriptoma , Translocación Genética
10.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039707

RESUMEN

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/fisiología , Proteína p53 Supresora de Tumor/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Mutación , Organoides/metabolismo , Factores de Transcripción/metabolismo
11.
Blood ; 138(6): 439-451, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-33876187

RESUMEN

We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using 2 independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp (P-selectin), the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics or deletion of Dnmt3a/b molecularly resembles HSC rejuvenation or aging, respectively.


Asunto(s)
Senescencia Celular , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Transcriptoma , Animales , Células Madre Hematopoyéticas/citología , Ratones , Ratones Transgénicos
12.
Mech Ageing Dev ; 189: 111280, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32512018

RESUMEN

The two transcriptional coactivators YAP/TAZ act as the downstream transducers of the Hippo pathway. Recent studies have demonstrated that those two transcriptional regulators are crucial for an organism in order to induce a regenerative response upon tissue damage. In addition, YAP/TAZ are promising targets for regenerative medicine, as artificially increasing YAP/TAZ activity can be used to stimulate tissue regeneration, even in tissues that otherwise have little ability to regenerate. We will summarize here how YAP/TAZ could be used in regenerative medicine and how these two transcriptional regulators have been linked to aging so far.


Asunto(s)
Envejecimiento/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
13.
Cell Rep ; 27(12): 3533-3546.e7, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216474

RESUMEN

YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma del Pulmón/patología , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cromatina/metabolismo , Regulación de la Expresión Génica , Mitosis/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Mama/citología , Mama/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/genética , Elementos de Facilitación Genéticos , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Pronóstico , Regiones Promotoras Genéticas , Tasa de Supervivencia , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
14.
Cell Mol Life Sci ; 76(13): 2559-2570, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30976839

RESUMEN

Skeletal muscle regeneration is a finely tuned process involving the activation of various cellular and molecular processes. Satellite cells, the stem cells of skeletal muscle, are indispensable for skeletal muscle regeneration. Their functionality is critically modulated by intrinsic signaling pathways as well as by interactions with the stem cell niche. Here, we discuss the properties of satellite cells, including heterogeneity regarding gene expression and/or their phenotypic traits and the contribution of satellite cells to skeletal muscle regeneration. We also summarize the process of regeneration with a specific emphasis on signaling pathways, cytoskeletal rearrangements, the importance of miRNAs, and the contribution of non-satellite cells such as immune cells, fibro-adipogenic progenitor cells, and PW1-positive/Pax7-negative interstitial cells.


Asunto(s)
Células Madre Adultas/citología , Desarrollo de Músculos , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Regeneración , Adulto , Diferenciación Celular , Humanos
15.
Nat Commun ; 9(1): 3781, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209298

RESUMEN

In the original version of this Article, financial support was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to include the following: "This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001144), the UK Medical Research Council (FC001144), and the Wellcome Trust (FC001144)." https://doi.org/10.1038/s41467-018-05370-7 .

16.
Nat Commun ; 9(1): 3115, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082728

RESUMEN

Yes-associated protein (YAP), the downstream transducer of the Hippo pathway, is a key regulator of organ size, differentiation and tumorigenesis. To uncover Hippo-independent YAP regulators, we performed a genome-wide CRISPR screen that identifies the transcriptional repressor protein Trichorhinophalangeal Syndrome 1 (TRPS1) as a potent repressor of YAP-dependent transactivation. We show that TRPS1 globally regulates YAP-dependent transcription by binding to a large set of joint genomic sites, mainly enhancers. TRPS1 represses YAP-dependent function by recruiting a spectrum of corepressor complexes to joint sites. Loss of TRPS1 leads to activation of enhancers due to increased H3K27 acetylation and an altered promoter-enhancer interaction landscape. TRPS1 is commonly amplified in breast cancer, which suggests that restrained YAP activity favours tumour growth. High TRPS1 activity is associated with decreased YAP activity and leads to decreased frequency of tumour-infiltrating immune cells. Our study uncovers TRPS1 as an epigenetic regulator of YAP activity in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Acetilación , Animales , Sitios de Unión , Neoplasias de la Mama/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Femenino , Genómica , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Regiones Promotoras Genéticas , ARN Interferente Pequeño/metabolismo , Proteínas Represoras , Análisis de Matrices Tisulares , Activación Transcripcional
17.
Proc Natl Acad Sci U S A ; 114(30): 8029-8034, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28698371

RESUMEN

GAS2L3 is a recently identified cytoskeleton-associated protein that interacts with actin filaments and tubulin. The in vivo function of GAS2L3 in mammals remains unknown. Here, we show that mice deficient in GAS2L3 die shortly after birth because of heart failure. Mammalian cardiomyocytes lose the ability to proliferate shortly after birth, and further increase in cardiac mass is achieved by hypertrophy. The proliferation arrest of cardiomyocytes is accompanied by binucleation through incomplete cytokinesis. We observed that GAS2L3 deficiency leads to inhibition of cardiomyocyte proliferation and to cardiomyocyte hypertrophy during embryonic development. Cardiomyocyte-specific deletion of GAS2L3 confirmed that the phenotype results from the loss of GAS2L3 in cardiomyocytes. Cardiomyocytes from Gas2l3-deficient mice exhibit increased expression of a p53-transcriptional program including the cell cycle inhibitor p21. Furthermore, loss of GAS2L3 results in premature binucleation of cardiomyocytes accompanied by unresolved midbody structures. Together these results suggest that GAS2L3 plays a specific role in cardiomyocyte cytokinesis and proliferation during heart development.


Asunto(s)
Cardiomiopatía Dilatada/genética , Citocinesis , Proteínas del Citoesqueleto/fisiología , Miocitos Cardíacos/fisiología , Animales , Cardiomiopatía Dilatada/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citocinesis/genética , Proteínas del Citoesqueleto/genética , Fibrosis , Eliminación de Gen , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Miocardio/patología , Proteína p53 Supresora de Tumor/metabolismo
18.
Cell Cycle ; 15(19): 2551-2556, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27433809

RESUMEN

c-Myc (MYC) is an oncogenic transcription factor that is commonly overexpressed in a wide variety of human tumors. In breast cancer, MYC has recently been linked to the triple-negative subtype, a subtype that lacks any targeted therapy. Previously, we demonstrated that MYC behaves as a potent repressor of YAP and TAZ, 2 transcriptional coactivators that function as downstream transducers of the Hippo pathway. In this previous study, MYC repressed YAP/TAZ not only in primary breast epithelial cells but also in mouse models of triple-negative tumors. Here, we extend our previous bioinformatic and experimental analyses and demonstrate that MYC deregulation in primary breast epithelial cells leads to a robust repression of TEAD transcription factor activity, the transcription factor family mainly responsible for YAP/TAZ recruitment. Surprisingly, we find that MYC and TEAD activity is able to stratify different breast cancer subtypes in large panels of breast cancer patients. Thus, a deep understanding of the MYC-YAP/TAZ circuitry might yield new insights into the establishment and maintenance of specific breast cancer subtypes.


Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Fosfoproteínas/metabolismo , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAP
19.
Elife ; 52016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27460974

RESUMEN

Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells.


Asunto(s)
ADN/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética , Línea Celular , Inmunoprecipitación de Cromatina , Células Epiteliales/fisiología , Perfilación de la Expresión Génica , Humanos , Modelos Teóricos , Unión Proteica , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
20.
Mol Cell ; 61(1): 54-67, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26687678

RESUMEN

MYC is an unstable protein, and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that MYC proteasomal turnover is dispensable for loading of RNA polymerase II (RNAPII). In contrast, MYC turnover is essential for recruitment of TRRAP, histone acetylation, and binding of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII and transcriptional elongation. In the absence of histone acetylation and P-TEFb recruitment, MYC associates with the PAF1 complex (PAF1C) through a conserved domain in the MYC amino terminus ("MYC box I"). Depletion of the PAF1C subunit CDC73 enhances expression of MYC target genes, suggesting that the MYC/PAF1C complex can inhibit transcription. Because several ubiquitin ligases bind to MYC via the same domain ("MYC box II") that interacts with TRRAP, we propose that degradation of MYC limits the accumulation of MYC/PAF1C complexes during transcriptional activation.


Asunto(s)
Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elongación de la Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular , Proliferación Celular , Ensamble y Desensamble de Cromatina , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Complejos Multiproteicos , Mutación , Proteínas Nucleares/genética , Fosfoproteínas/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Proteolisis , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Polimerasa II/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Transfección , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...