Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(9)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37755047

RESUMEN

Kettle holes are able to increase the soil and air humidity around them. Therefore, they create a perfect habitat for phytopathogenic fungi of the genera Fusarium and Alternaria to develop, sporulate, and immigrate into neighboring agricultural fields. In our study, we establish transects from the edges of different kettle holes and field edges up to 50 m into the fields to analyze the abundance and diversity of pathogenic fungi in these transition zones by culture-dependent and culture-independent methods. However, in 2019 and 2020, low precipitation and higher temperatures compared to the long-time average were measured, which led to limited infections of weeds in the transition zones with Fusarium and Alternaria. Therefore, the hypothesized significantly higher infection of wheat plants next to the kettle holes by a strong spread of fungal spores was not detected. Infestation patterns of Fusarium and Alternaria fungi on weeds and wheat ears were spatially different. In total, 9 different Fusarium species were found in the transition zone. The species diversity at kettle holes differed from 0 to 6 species. The trend toward increased dryness in the northeast German agricultural landscape and its impact on the changing severity of fungal infections is discussed.

2.
Mycotoxin Res ; 39(2): 109-126, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929507

RESUMEN

Fungi of the genus Alternaria are ubiquitous in the environment. Their mycotoxins can leach out of contaminated plants or crop debris into the soil entering the plant via the roots. We aim to evaluate the importance of this entry pathway and its contribution to the overall content of Alternaria toxins (ATs) in wheat plants to better understand the soil-plant-phytopathogen system. A hydroponic cultivation system was established and wheat plants were cultivated for up to two weeks under optimal climate conditions. One half of the plants was treated with a nutrient solution spiked with alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA), whereas the other half of the plants was cultivated without mycotoxins. Plants were harvested after 1 and 2 weeks and analyzed using a QuEChERS-based extraction and an in-house validated LC-MS/MS method for quantification of the ATs in roots, crowns, and leaves separately. ATs were taken up by the roots and transported throughout the plant up to the leaves after 1 as well as 2 weeks of cultivation with the roots showing the highest ATs levels followed by the crowns and the leaves. In addition, numerous AOH and AME conjugates like glucosides, malonyl glucosides, sulfates, and di/trihexosides were detected in different plant compartments and identified by high-resolution mass spectrometry. This is the first study demonstrating the uptake of ATs in vivo using a hydroponic system and whole wheat plants examining both the distribution of ATs within the plant compartments and the modification of ATs by the wheat plants.


Asunto(s)
Alternaria , Micotoxinas , Cromatografía Liquida , Alternaria/química , Triticum/microbiología , Hidroponía , Contaminación de Alimentos/análisis , Espectrometría de Masas en Tándem , Micotoxinas/análisis , Lactonas/análisis , Suelo
3.
Curr Microbiol ; 72(4): 383-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26687461

RESUMEN

Fluorescent pseudomonads isolated from wheat leaves were characterized regarding their antagonistic potential and taxonomy in relation to protect crop plants from infestation by Fusarium and Alternaria fungi causing diseases in wheat. Using a dual culture assay, inhibition of fungal growth was found for 40 isolates of 175 fluorescent pseudomonads. Twenty-two of the antagonists were able to suppress strains of Fusarium as well as Alternaria. By means of real-time qPCR, the phlD gene encoding the antibiotic 2,4-diacetylphloroglucinol was detected in 20 isolates. On the basis of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry spectral patterns, the isolates with antagonistic activity were assigned to the phylogenetic subgroup Pseudomonas fluorescens and the closely related Pseudomonas gessardii subgroup. The results of the study suggest that pseudomonads in the phyllosphere of crop plants may possibly contribute to natural plant protection.


Asunto(s)
Pseudomonas/fisiología , Triticum/microbiología , Antibiosis , Proteínas Bacterianas/genética , Análisis por Conglomerados , Hongos/fisiología , Hojas de la Planta/microbiología , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , Estaciones del Año , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...