Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Basic Microbiol ; 61(4): 330-338, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33599337

RESUMEN

Microalgae have received continued attention as a potential source for biofuel production. However, the lack of suitable strains that provide a lipid-rich biomass and tolerate harsh condition inhibits their industrial application. This report describes an effort to transform Synechocystis sp. with genes encoding acetyl-CoA carboxylase (ACC), a key regulatory enzyme in the lipogenesis pathway, from the white mustard plant (Sinapis alba) and the bacterium Escherichia coli DH5α using chitosan nanoparticles. Although a recombinant plasmid encoding S. alba ACC failed to express, successful transformation was achieved with a recombinant plasmid encoding E. coli DH5α ACC. The successful transformant, Synechocystis sp. PAK13, exhibited increased ACC expression compared with its wild-type parent (11.8 vs. 7.2 ng), which significantly increased its lipid content (by 3.6-fold). Synechocystis sp. PAK13 also exhibited a significant (20%) reduction in photosynthetic pigments, a 1.52-fold higher glucose content and a 3.5-fold lower sucrose content than the wild-type. In conclusion, this report introduces a useful strategy to overexpress the ACC gene in microalgae, creating strains with improved lipid production that are suited to industrial applications.

2.
Nat Prod Commun ; 7(9): 1209-10, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23074910

RESUMEN

Extracts of four species of seaweeds, Ulva lactuca L. (green), Liagora farinosa Lamouroux (red), Padina pavonia L. and Turbinaria ornata Turn (brown), were screened for their antimicrobial, and antimalarial activities, and binding affinity for human opioid receptors. Phytochemical analysis led to the isolation and identification of 10 constituents: fucosterol, stearic acid, palmitic acid, palmitoleic acid, oleic acid, myristic acid, p-hydroxybenzoic acid, beta-sitosterol, glycerol-1-olyl-3-palmotyl-2-galactoside, and glycerol-1,3-diolyl, The last two compounds displayed strong binding affinity to delta opioid receptors.


Asunto(s)
Algas Marinas/química , Egipto , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...