Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842427

RESUMEN

Two years of satellite observations were used to quantify methane emissions from coal mines in Queensland, the largest coal-producing state in Australia. The six analyzed surface and underground coal mines are estimated to emit 570 ± 98 Gg a-1 in 2018-2019. Together, they account for 7% of the national coal production while emitting 55 ± 10% of the reported methane emission from coal mining in Australia. Our results indicate that for two of the three locations, our satellite-based estimates are significantly higher than reported to the Australian government. Most remarkably, 40% of the quantified emission came from a single surface mine (Hail Creek) located in a methane-rich coal basin. Our findings call for increased monitoring and investment in methane recovery technologies for both surface and underground mines.

2.
Nature ; 597(7876): 366-369, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526704

RESUMEN

Southeast Australia experienced intensive and geographically extensive wildfires during the 2019-2020 summer season1,2. The fires released substantial amounts of carbon dioxide into the atmosphere3. However, existing emission estimates based on fire inventories are uncertain4, and vary by up to a factor of four for this event. Here we constrain emission estimates with the help of satellite observations of carbon monoxide5, an analytical Bayesian inversion6 and observed ratios between emitted carbon dioxide and carbon monoxide7. We estimate emissions of carbon dioxide to be 715 teragrams (range 517-867) from November 2019 to January 2020. This is more than twice the estimate derived by five different fire inventories8-12, and broadly consistent with estimates based on a bottom-up bootstrap analysis of this fire episode13. Although fires occur regularly in the savannas in northern Australia, the recent episodes were extremely large in scale and intensity, burning unusually large areas of eucalyptus forest in the southeast13. The fires were driven partly by climate change14,15, making better-constrained emission estimates particularly important. This is because the build-up of atmospheric carbon dioxide may become increasingly dependent on fire-driven climate-carbon feedbacks, as highlighted by this event16.


Asunto(s)
Dióxido de Carbono/análisis , Imágenes Satelitales , Incendios Forestales/estadística & datos numéricos , Atmósfera/química , Australia , Teorema de Bayes , Monóxido de Carbono/análisis , Cambio Climático , Eucalyptus , Bosques , Pradera , Incertidumbre
3.
Sci Adv ; 7(27)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34193415

RESUMEN

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates >500 kg hour-1), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.

4.
Sci Adv ; 6(17): eaaz5120, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494644

RESUMEN

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the Permian Basin, which is among the world's most prolific oil-producing regions and accounts for >30% of total U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a-1, representing the largest methane flux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates a high-resolution satellite data-based atmospheric inversion framework, providing a robust top-down analytical tool for quantifying and evaluating subregional methane emissions.

5.
Artículo en Inglés | MEDLINE | ID: mdl-31843920

RESUMEN

Methane emissions due to accidents in the oil and natural gas sector are very challenging to monitor, and hence are seldom considered in emission inventories and reporting. One of the main reasons is the lack of measurements during such events. Here we report the detection of large methane emissions from a gas well blowout in Ohio during February to March 2018 in the total column methane measurements from the spaceborne Tropospheric Monitoring Instrument (TROPOMI). From these data, we derive a methane emission rate of 120 ± 32 metric tons per hour. This hourly emission rate is twice that of the widely reported Aliso Canyon event in California in 2015. Assuming the detected emission represents the average rate for the 20-d blowout period, we find the total methane emission from the well blowout is comparable to one-quarter of the entire state of Ohio's reported annual oil and natural gas methane emission, or, alternatively, a substantial fraction of the annual anthropogenic methane emissions from several European countries. Our work demonstrates the strength and effectiveness of routine satellite measurements in detecting and quantifying greenhouse gas emission from unpredictable events. In this specific case, the magnitude of a relatively unknown yet extremely large accidental leakage was revealed using measurements of TROPOMI in its routine global survey, providing quantitative assessment of associated methane emissions.

6.
Sci Rep ; 7: 45759, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393869

RESUMEN

Year-to-year variations in the atmospheric methane (CH4) growth rate show significant correlation with climatic drivers. The second half of 2010 and the first half of 2011 experienced the strongest La Niña since the early 1980s, when global surface networks started monitoring atmospheric CH4 mole fractions. We use these surface measurements, retrievals of column-averaged CH4 mole fractions from GOSAT, new wetland inundation estimates, and atmospheric δ13C-CH4 measurements to estimate the impact of this strong La Niña on the global atmospheric CH4 budget. By performing atmospheric inversions, we find evidence of an increase in tropical CH4 emissions of ∼6-9 TgCH4 yr-1 during this event. Stable isotope data suggest that biogenic sources are the cause of this emission increase. We find a simultaneous expansion of wetland area, driven by the excess precipitation over the Tropical continents during the La Niña. Two process-based wetland models predict increases in wetland area consistent with observationally-constrained values, but substantially smaller per-area CH4 emissions, highlighting the need for improvements in such models. Overall, tropical wetland emissions during the strong La Niña were at least by 5% larger than the long-term mean.

7.
Science ; 325(5946): 1374-7, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19745148

RESUMEN

The hydrological cycle and its response to environmental variability such as temperature changes is of prime importance for climate reconstruction and prediction. We retrieved deuterated water/water (HDO/H2O) abundances using spaceborne absorption spectroscopy, providing an almost global perspective on the near-surface distribution of water vapor isotopologs. We observed an unexpectedly high HDO/H2O seasonality in the inner Sahel region, pointing to a strong isotopic depletion in the subsiding branch of the Hadley circulation and its misrepresentation in general circulation models. An extension of the analysis at high latitudes using ground-based observations of deltaD and a model study shows that dynamic processes can entirely compensate for temperature effects on the isotopic composition of precipitation.

8.
Appl Opt ; 48(18): 3322-36, 2009 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-19543338

RESUMEN

Retrievals of atmospheric carbon dioxide (CO2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO(2) errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol.

9.
Appl Opt ; 42(18): 3610-9, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12833967

RESUMEN

A method is presented for in-flight validation of space-based polarization measurements based on approximation of the direction of polarization of scattered sunlight by the Rayleigh single-scattering value. This approximation is verified by simulations of radiative transfer calculations for various atmospheric conditions. The simulations show locations along an orbit where the scattering geometries are such that the intensities of the parallel and orthogonal polarization components of the light are equal, regardless of the observed atmosphere and surface. The method can be applied to any space-based instrument that measures the polarization of reflected solar light. We successfully applied the method to validate the Global Ozone Monitoring Experiment (GOME) polarization measurements. The error in the GOME's three broadband polarization measurements appears to be approximately 1%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...