Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dent ; : 103613, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33617943

RESUMEN

OBJECTIVES: To test the demineralization potential, bonding performance, and dentin biostability when using hydroxy acids for etching enamel and dentin. METHODS: Surface microhardness, roughness and depth of demineralization were investigated after etching enamel and dentin with 35% glycolic acid (Gly), tartaric acid (Ta), gluconic acid (Glu), gluconolactone (Gln), or phosphoric acid (Pa) (n = 5/group). Dentin microtensile bond strength (µTBS) after 24 h or 1 year of bonding (n = 8 teeth/group) and enamel shear bond strength (SBS) after 24 h (n = 10 teeth/group) were obtained. In dentin, failure mode was classified as adhesive, cohesive in dentin/resin, or mixed. Dentin biostability was assessed by loss of dry weight and collagen degradation after 30-day incubation (n = 10 beams/group). Statistical analysis consisted of ANOVA with post-hoc Tukey's HSD, Tukey-Kramer test, Bonferroni correction, and Fisher's exact tests (α = .05). RESULTS: Gly showed better or similar results than Pa for enamel microhardness and dentin roughness, while no significant differences were observed among Ta, Glu, and Gln (p > .05). Hydroxy acids produced significantly shallower demineralization than Pa (p < .05). Gln resulted in the lowest SBS and µTBS, while Gly, Glu, Ta, and Pa showed no significant difference. There was no significant difference in µTBS between 24 h and 1 year of storage. The association between failure mode and etchant was statistically significant after 24 h only (p < .001). Hydroxy acids resulted in higher dentin biostability than Pa (p < .05). CONCLUSIONS: Gly, Glu and Ta resulted in adequate bonding performance and reduced dentin degradation and are potential alternative etchants to improve long-term stability of adhesive restorations. CLINICAL SIGNIFICANCE: This study supports the potential use of hydroxy acids as alternative etchants when bonding to enamel and dentin and demonstrates that specific acids are more suitable to be used in adhesion since they result in appropriate bond strength and less dentin degradation.

2.
J Nat Prod ; 83(11): 3287-3297, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33151073

RESUMEN

The present study elucidated the structures of three A-type tri- and tetrameric proanthocyanidins (PACs) isolated from Cinnamomum verum bark to the level of absolute configuration and determined their dental bioactivity using two therapeutically relevant bioassays. After selecting a PAC oligomer fraction via a biologically diverse bioassay-guided process, in tandem with centrifugal partition chromatography, phytochemical studies led to the isolation of PAC oligomers that represent the main bioactive principles of C. verum: two A-type tetrameric PACs, epicatechin-(2ß→O→7,4ß→8)-epicatechin-(4ß→6)-epicatechin-(2ß→O→7,4ß→8)-catechin (1) and parameritannin A1 (2), together with a trimer, cinnamtannin B1 (3). Structure determination of the underivatized proanthocyanidins utilized a combination of HRESIMS, ECD, 1D/2D NMR, and 1H iterative full spin analysis data and led to NMR-based evidence for the deduction of absolute configuration in constituent catechin and epicatechin monomeric units.

3.
Dent Mater ; 36(12): 1536-1543, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33129510

RESUMEN

OBJECTIVES: To develop a protocol for assessment of the bulk viscoelastic behavior of dentin extracellular matrix (ECM), and to assess relationships between induced collagen cross-linking and viscoelasticity of the dentin ECM. METHODS: Dentin ECM was treated with agents to induce exogenous collagen cross-linking: proanthocyanidins (PACs) from Vitis vinifera - VVe, PACs from Pinus massoniana - PMe, glutaraldehyde - (GA), or kept untreated (control). A dynamic mechanical strain sweep method was carried out in a 3-point bending submersion clamp at treatment; after protein destabilization with 4 M urea and after 7-day, 6-month, and 12-month incubation in simulated body fluid. Tan δ, storage (E'), loss (E"), and complex moduli (E*) were calculated and data were statistically analyzed using two-way ANOVA and post-hoc tests (α = 0.05). Chemical analysis of dentin ECM before and after protein destabilization was assessed with ATR-FTIR spectroscopy. RESULTS: Significant interactions between study factors (treatment vs. time points, p < 0.001) were found for all viscoelastic parameters. Despite a significant decrease in all moduli after destabilization, PAC-treated dentin remained statistically higher than control (p < 0.001), indicating permanent mechanical enhancement after biomodification. Covalently crosslinked, GA-treated dentin was unaffected by destabilization (p = 0.873) and showed the lowest damping capacity (tan δ) at all time points (p < 0.001). After 12 months, the damping capacity of PMe and VVe groups decreased significantly. Changes in all amide IR resonances revealed a partial chemical reversal of PAC-mediated biomodification. SIGNIFICANCE: Viscoelastic measurements and IR spectroscopy aid in elucidating the role of inter-molecular collagen cross-linking in the mechanical behavior of dentin ECM.

4.
J Am Dent Assoc ; 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33250170

RESUMEN

BACKGROUND: Zirconia is a relatively new dental material used for indirect dental restorations. Little is known about how dental practitioners are using this material in their practice. METHODS: A survey on zirconia restorations was developed and administered electronically through e-mail communications to the American Dental Association Clinical Evaluators (ACE) Panel on August 31, 2020. Reminders were sent to nonrespondents, and the survey closed 2 weeks after the launch date. RESULTS: When using zirconia for a restoration, respondents choose it to restore natural teeth (99%) more often than implants (76%). Almost all respondents (98%) use it for posterior crowns, whereas approximately two-thirds (61%) use it for anterior crowns. Restoration removal or replacement and shade matching and translucency were the top 2 cited disadvantages of zirconia, whereas most of the respondents (57%) cited flexural strength or fracture resistance as the biggest advantage. Fine diamonds and ceramic polishers are used most often to polish and adjust zirconia restorations, whereas coarse diamond rotary instruments and those made specifically for zirconia are most frequently used for removing these restorations. Compared with metal ceramic restorations, more than 50% of respondents experience debonding more often with zirconia restorations. CONCLUSIONS: Dentists recognize the favorable fracture resistance and flexural strength properties of zirconia, and most use similar techniques when adjusting and removing this material. Removing these restorations and shade matching are a struggle for many. PRACTICAL IMPLICATIONS: Dentists may benefit from tips on the best methods to remove, shade match, and adhesively bond zirconia restorations.

5.
J Am Dent Assoc ; 151(10): 796-797.e2, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32979959

RESUMEN

BACKGROUND: Bonding crowns and bridges with resin cement can improve retention and reinforcement of the restoration. However, there is variation in the steps taken by different practitioners to achieve this goal. METHODS: The authors developed a survey on bonding dental crowns and bridges with resin cement and distributed it electronically to the American Dental Association Clinical Evaluators (ACE) Panel on May 22, 2020. The survey remained open for 2 weeks. Descriptive data analysis was conducted using SAS Version 9.4. RESULTS: A total of 326 panelists responded to the survey, and 86% of respondents who place crowns or bridges use resin cements for bonding. When placing a lithium disilicate restoration, an almost equal proportion of respondents etch it with hydrofluoric acid in their office or asked the laboratory to do it for them, and more than two-thirds use a silane primer before bonding. For zirconia restorations, 70% reported their restorations are sandblasted in the laboratory, and 39% use a primer containing 10-methacryloyloxydecyl dihydrogen phosphate. One-half of respondents clean their lithium disilicate or zirconia restorations with a cleaning solution. Resin cements used with a primer in the etch-and-rinse mode are the most widely used. The technique used to cure and clean excess resin cement varies among respondents. CONCLUSIONS: The types of resin cements used, tooth preparation, crown or bridge preparation, and bonding technique vary among this sample. PRACTICAL IMPLICATIONS: Although many dentists bond crowns and bridges on the basis of best practices, improvement in the process may be achieved by dentists communicating with their laboratory to confirm the steps performed there, ensuring an effective cleaning technique is used after try-in and verifying that the correct primer is used with their chosen restorative material.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , American Dental Association , Coronas , Cementos Dentales , Materiales Dentales , Porcelana Dental , Análisis del Estrés Dental , Humanos , Ensayo de Materiales , Propiedades de Superficie , Encuestas y Cuestionarios , Estados Unidos
6.
Dent Mater ; 36(10): e302-e308, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32811665

RESUMEN

OBJECTIVES: To investigate the role of proteoglycans (PGs) on the physical properties of the dentin matrix and the bond strength of methacrylate resins with varying hydrophilicities. METHODS: Dentin were obtained from crowns of human molars. Enzymatic removal of PGs followed a standard protocol using 1 mg/mL trypsin (Try) for 24 h. Controls were incubated in ammonium bicarbonate buffer. Removal of PGs was assessed by visualization of glycosaminoglycan chains (GAGs) in dentin under transmission electron microscopy (TEM). The dentin matrix swelling ratio was estimated using fully demineralized dentin. Dentin wettability was assessed on wet, dry and re-wetted dentin surfaces through water contact angle measurements. Microtensile bond strength test (TBS) was performed with experimental adhesives containing 6% HEMA (H6) and 18% HEMA (H18) and a commercial dental adhesive. Data were statistically analyzed using ANOVA and post-hoc tests (α = 0.05). RESULTS: The enzymatic removal of PGs was confirmed by the absence and fragmentation of GAGs. There was statistically significant difference between the swelling ratio of Try-treated and control dentin (p < 0.001). Significantly lower contact angle was found for Try-treated on wet and dry dentin (p < 0.002). The contact angle on re-wet dentin was not recovered in Try-treated group (p = 0.9). Removal of PGs significantly improved the TBS of H6 (109% higher, p < 0.001) and H18 (29% higher, p = 0.002) when compared to control. The TBS of commercial adhesive was not affected by trypsin treatment (p = 0.9). SIGNIFICANCE: Changing the surface energy of dentin by PGs removal improved resin adhesion, likely due to more efficient water displacement, aiding to improved resin infiltration and polymerization.

7.
J Adhes Dent ; 22(4): 415-420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32666068

RESUMEN

PURPOSE: To investigate whether interfacial enzymatic activity and adhesion receptiveness of artificial caries-affected dentin (ACAD) simulate those of natural caries-affected dentin (NCAD). MATERIALS AND METHODS: Thirty dentin specimens were prepared from human molars to determine interfacial gelatinolytic activity using in situ zymography and adhesion experiments (micropermeability and bond strength [µTBS]). Groups were formed according to the type of dentin: artificial caries-affected dentin (ACAD), natural caries-affected dentin (NCAD), or sound dentin. ACAD was produced by incubating dentin with Streptococcus mutans in a chemically defined medium (CDM) with 1% sucrose for 7 days at 37°C under anaerobic conditions. CDM was replaced daily, and the sterility as well as the pH of the culture was monitored. Adhesion experiments employed Single Bond Universal (3M Oral Care) in self-etch mode. Data were individually processed and analyzed using ANOVA and post-hoc tests (α = 0.05). RESULTS: The enzymatic activity of ACAD was similar to that of sound dentin, but was lower than that of NCAD, which elicited the highest activity (p < 0.05). Interfacial micropermeability intensity at the hybrid layer or in underlying dentin (5 µm below the interface) was similar in all types of dentin (p > 0.05). On the other hand, substrate permeability was higher for NCAD than for ACAD. The highest sealing ability was detected in sound dentin. Bond strengths to ACAD were higher than to NCAD. However, the highest µTBS was observed in sound dentin (p < 0.05). CONCLUSION: Artificial caries-affected dentin simulated neither the gelatinolytic activity nor bonding receptiveness of natural caries-affected dentin.


Asunto(s)
Recubrimiento Dental Adhesivo , Caries Dental , Dentina , Recubrimientos Dentinarios , Humanos , Ensayo de Materiales , Cementos de Resina , Resistencia a la Tracción
8.
Org Lett ; 22(14): 5304-5308, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32639751

RESUMEN

An investigation of the dental bioactive proanthocyanidin (PAC) oligomer fractions led to three structurally distinct new PACs (1-3) from pine bark. Pinutwindoublin (1) is the first reported trimer with double A-type interflavanyl linkages (2α→O→5,4α→6 and 2α→O→7,4α→8). Pinuspirotetrin (2) represents the first reported PAC tetramer with a heterodimeric framework consisting of one spiro-type and one A-type dimer. Pinumassohexin (3) was elucidated as a mixed A + B-type hexamer that consists of a peanut-derived tetramer, peanut procyanidin E, and an A-type dimer (5). Compound 3 increased the modulus of elasticity of dentin by an impressive 4.3 times at a concentration of 0.65%.

9.
J Am Dent Assoc ; 151(7): 544-545.e2, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32498964

RESUMEN

BACKGROUND: The ability to polymerize light-activated dental materials with dental light-curing units (DLCUs) has revolutionized dentistry. However, proper DLCU use is essential for ensuring the effectiveness and performance of these materials. METHODS: The authors developed an electronic cross-sectional survey in the American Dental Association Qualtrics Research Core platform. The survey included questions about DLCU use, unit type and selection, training, maintenance, technique, and safety measures. The authors deployed the survey to 809 American Dental Association Clinical Evaluators (ACE) panelists on October 9, 2019, and sent reminder links to nonrespondents 1 week later. They conducted exploratory and descriptive analyses using SAS software Version 9.4. RESULTS: Of the 353 ACE panelists who completed the survey, most used a DLCU in their practices (99%), and light-emitting diode multiwave units were the most common type of DLCU units (55%). Dentists use DLCUs for over one-half of their appointments each day (mean [standard deviation], 59% [22%]). Regarding technique, respondents reported that they modify their curing technique on the basis of material thickness (79%) and material type or light tip-to-target distances (59%). Maintenance practices varied, with two-thirds of respondents reporting that they periodically check their DLCUs' light output. CONCLUSIONS: DLCUs are an integral part of a general dentist's daily practice, but maintenance, ocular safety, and technique varied widely among this sample. PRACTICAL IMPLICATIONS: Because clinical effectiveness requires delivery of an adequate amount of light energy at the appropriate wavelength, variation in DLCU maintenance, safety, and techniques suggest that dentists could benefit from additional guidance and training on DLCU operation.


Asunto(s)
Resinas Compuestas , Luces de Curación Dental , American Dental Association , Estudios Transversales , Encuestas y Cuestionarios , Estados Unidos
10.
J Org Chem ; 85(13): 8462-8479, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32551610

RESUMEN

Guided by dentin biomechanical bioactivity, this phytochemical study led to the elucidation of an extended set of structurally demanding proanthocyanidins (PACs). Unambiguous structure determination involved detailed spectroscopic and chemical characterization of four A-type dimers (2 and 4-6), seven trimers (10-16), and six tetramers (17-22). New outcomes confirm the feasibility of determining the absolute configuration of the catechol monomers in oligomeric PACs by one-dimensional (1D) and two-dimensional (2D) NMR. Electronic circular dichroism as well as phloroglucinolysis followed by mass spectrometry and chiral phase high-performance liquid chromatography (HPLC) analysis generated the necessary chiral reference data. In the context of previously reported dentin-bioactive PACs, accurately and precisely assigned 13C NMR resonances enabled absolute stereochemical assignments of PAC monomers via (i) inclusion of the 13C NMR γ-gauche effect and (ii) determination of differential 13C chemical shift values (ΔδC) in comparison with those of the terminal monomer (unit II) in the dimers 2 and 4-6. Among the 13 fully elucidated PACs, eight were identified as new, and one structure (11) was revised based on new knowledge gained regarding the subtle, stereospecific spectroscopic properties of PACs.

11.
J Dent ; 99: 103354, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32360320

RESUMEN

OBJECTIVES: Proanthocyanidins (PACs) are biocompounds mimicking native collagen cross-links. The effective and practical delivery of any biocompound is pivotal for clinical usage. The aim was to investigate the dentin biomodification and effective formation of dentin-resin biointerfaces of two highly bioactive PAC-rich extracts, Vitis vinifera (Vv) and Camellia sinensis (Cs), delivered using neutral (NP) or acidic (AP) rinse-out primer approaches. METHODS: The depth of dentin demineralization (optical profilometry), dentin biomodification (apparent modulus of elasticity, collagen auto-fluorescence) and properties of dentin-resin interfaces (microtensile bond strength - µTBS, and micro-permeability) were investigated. NP consisted of either 15% Vv or Cs applied for 60 s after surface etching; while AP contained 15% Vv or Cs in either 35% glycolic acid or tartaric acid applied for 30 s or 60 s. Data were analyzed using ANOVA and post-hoc tests (α = 0.05). RESULTS: The depth of demineralization was statistically higher when applied for 60 s, regardless of rinse-out primer approach (p < 0.001). Compared to the AP strategy, NP exhibited statistically higher apparent modulus of elasticity, regardless of PAC extract (p < 0.001). Highest µTBS were obtained for NPVv, which were statistically similar to APGAVv, when applied for 60 s (p < 0.001); both resulted in a dramatic decrease of the interfacial permeability. NPCs group showed the lowest µTBS (p < 0.001). CONCLUSIONS: A combination of high bond strength and low micro-permeability can be accomplished using glycolic acid with the mid- and high-PAC oligomer enriched extract (Vv). Cs extract containing mostly catechins and dimeric PACs, was found unsuitable for resin-dentin adhesion despite exhibiting high initial dentin biomodification. CLINICAL SIGNIFICANCE: This study provides a new conceptual delivery of PAC-mediated dentin biomodification and conservative dentin surface etching using rinse-out primers. The strategy requires a specific combination of PAC source, α-hydroxy acid, and application time.

12.
Am J Dent ; 33(2): 64-68, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32259409

RESUMEN

PURPOSE: To evaluate the effect of dentin biomodification on the long-term strength of sound and caries-affected (CA) dentin as a strategy to stabilize the dentin matrix. The biomodification strategy utilized a naturally occurring proanthocyanidin-rich Vitis vinifera grape seeds (Vv), and compared with glutaraldehyde (GD). METHODS: Dentin from sound and carious human molars were sectioned from mid-coronal dentin. The temperature denaturation (Td) was assessed using differential scanning calorimetry in sealed pans. The inhibitory effect of the agents on the activity of recombinant MMP-2 and -9 were assessed using colorimetric assay. The ultimate tensile strength (UTS) of demineralized dentin were determined 24 hours after treatment and after 12 months storage in simulated body fluid. Data were statistically analyzed using ANOVA and post-hoc tests ( α= 0.05). RESULTS: There was no statistically significant difference in the Td between sound and CA dentin (P= 0.140); however, Vv and GD significantly increased the Td of both substrates (P< 0.001), indicating formation of collagen cross-linking. The activity of MMP-2 and MMP-9 were reduced by Vv and GD in a concentration dependent manner. The UTS of dentin matrix was significantly affected by treatments and storage times (P< 0.001). After a 12-month period, a significant decrease in UTS was observed for sound and CA, with complete solubilization of the CA dentin matrix. Vv and GD stabilized the UTS of both dentin substrates (P< 0.05). Sound and CA dentin matrix were susceptible to degradation after the 12-month period. Degradation of dentin matrix due to endogenous proteases activity was more pronounced in CA dentin. Dentin biomodification strategies increased the thermal stability and enhanced the long-term mechanical properties of both sound and CA dentin matrix. CLINICAL SIGNIFICANCE: Carious dentin matrix is more susceptible to breakdown over time than sound dentin; however, the degradation process can be impaired by dentin biomodification. This biomimetic strategy increases the long-term tensile strength of the dentin matrix. Reinforcement of caries-affected dentin may increase longevity of adhesive interfaces.


Asunto(s)
Recubrimiento Dental Adhesivo , Caries Dental , Biomimética , Dentina , Recubrimientos Dentinarios , Humanos , Ensayo de Materiales , Diente Molar , Resistencia a la Tracción
13.
J Am Dent Assoc ; 151(4): 303-304.e2, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32222178

RESUMEN

BACKGROUND: Human papillomavirus (HPV) is a sexually transmitted oncovirus associated with several malignancies, including oropharyngeal squamous cell carcinoma. The 9-valent HPV vaccine can help protect against the high-risk HPV strains most commonly associated with HPV-related cancers. METHODS: The authors used an electronic survey to assess the roles of dentists and their team members in discussing the HPV vaccine, as well as administering the vaccine in a dental setting. On December 6, 2019, the authors e-mailed a survey link to the American Dental Association Clinical Evaluators (ACE) Panel (n = 813), a sample of American Dental Association member dentists. After 1 e-mail reminder, the survey closed on December 19, 2019, and the authors conducted exploratory and descriptive data analyses using SAS Version 9.4 (SAS). RESULTS: A total of 329 dentists responded to the survey, and 83 (25%) of them reported that they or their team members discuss the implications of the HPV vaccine with age-eligible patients or their parents or guardians. Dentists lead two-thirds (n = 218) of the discussions, and the clinical examination is the most frequent moment during the patient visit in which HPV-related topics are discussed. Some of the top reasons respondents mentioned for not discussing the vaccine in their practice were the perception that these discussions are best left to other health care professionals and not knowing how to address the topic with patients. If the scope of dental practice is expanded to include administering the vaccine, 125 (38%) of respondents would feel uncomfortable administering the vaccine. The most common potential barriers to administering the vaccine in a dental setting include obtaining reimbursement and vaccine management and preservation. CONCLUSIONS: The survey results suggest that dentists' comfort levels and perceived roles in discussing and administering the HPV vaccine vary. PRACTICAL IMPLICATIONS: There is a need to further define the role of dentists and their team members in the promotion and administration of the HPV vaccine. Resources for dentists and dental team members may be helpful to support professional education and communication about the HPV vaccine.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , American Dental Association , Conocimientos, Actitudes y Práctica en Salud , Humanos , Encuestas y Cuestionarios , Estados Unidos
14.
J Biomech ; 101: 109633, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32035660

RESUMEN

This study investigated the contribution of small leucine rich proteoglycans (SLRPs) to the fracture toughness of the dentin extracellular matrix (ECM) by enzymatically-assisted selective removal of glycosaminoglycan chains (GAGs) and proteoglycans (PGs) core protein. We adapted the Mode III trouser tear test to evaluate the energy required to tear the dentin ECM. Trouser-shaped dentin specimens from crown and root were demineralized. Depletion of GAGs and PGs followed enzymatic digestion using chondroitinase ABC (c-ABC) and matrix metalloproteinase 3 (MMP-3), respectively. The legs from specimen were stretched under tensile force and the load at tear propagation was determined to calculate the tear energy (T, kJ/m2). SLRPs decorin and biglycan were visualized by immunohistochemistry and ECM tear pattern was analyzed in SEM. Results showed T of crown ECM was not affected by PGs/GAGs depletion (p = 0.799), whereas the removal of PGs significantly reduced T in root dentin ECM (p = 0.001). Root dentin ECM exhibited higher T than crown (p < 0.03), however no regional difference are present after PG depletion (p = 0.480). Immunohistochemistry confirmed removal of GAGs and PGs. SEM images showed structural modifications after PGs/GAGs removal such as enlargement of dentinal tubules, increased interfibrillar spaces and presence of untwisted fibrils with increased diameter. Findings indicate that the capacity of the PGs to unfold and untwist contribute to the dentin ECM resistance to tear, possibly influencing crack growth propagation. The regional differences are likely an evolutionary design to increase tooth survival, that undergoes repetitive mechanical loading and load stress dissipation over a lifetime of an individual.

15.
J Mech Behav Biomed Mater ; 103: 103589, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32090918

RESUMEN

Collagen glycation takes place under physiological conditions during chronological aging, leading to the formation of advanced glycation end-products (AGEs). AGEs accumulation induces non-enzymatic collagen cross-links increasing tissue stiffness and impairing function. Here, we focused on determining the cumulative effect of induced glycation on the mechanical behavior of highly collagen cross-linked dentin matrices and assess the topical inhibition potential of aminoguanidine. Bulk mechanical characterization suggests that early glycation cross-links significantly increase the tensile strength and stiffness of the dentin matrix and promote a brittle failure response. Histologically, glycation yielded a more mature type I collagen in a densely packed collagen matrix. The time-dependent effect of glycation indicates cumulative damage of dentin matrices that is partially inhibited by aminoguanidine. The regional dentin sites were differently affected by induced-glycation, revealing the crown dentin to be mechanically more affected by the glycation protocol. These findings in human dentin set the foundation for the proposed in vitro ribose-induced glycation model, which produces an early matrix stiffening mechanism by reducing tissue viscoelasticity and can be partially inhibited by topical aminoguanidine.

16.
ACS Biomater Sci Eng ; 6(8): 4539-4550, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33455170

RESUMEN

Plant-derived compounds incite applications virtually on every biomedical field due to the expedient antioxidant, anti-inflammatory and antimicrobial properties in conjunction with a natural character. Here, quercetin (QCT), a flavonoid with therapeutic potentials relevant to the oral environment, was encapsulated within metal-organic frameworks (MOFs) to address the concept of on-demand release of phytochemicals at the biointerface. We verified the applicability of a microporous MOF (ZIF-8) as a controlled-release system for QCT, as well as investigated the incorporation of QCT@ZIF-8 microparticles into a dental adhesive resin for desirable therapeutic capabilities at the tooth-restoration interface. QCT was encapsulated within the frameworks through a water-based, one-step synthetic process. The resulting QCT@ZIF-8 microparticles were characterized with respect to chemical composition, crystal structure, thermal behavior, micromorphology, and release profile under acidic and physiological conditions. A model dental adhesive formulation was enriched with the bioactive microparticles; both the degree of conversion (DC) of methacrylic double bonds and the polymer thermal behavior were accounted for. The results confirm that crystalline QCT@ZIF-8 microparticles with attractive loading capacities, submicron sizes, high thermal stability and responsiveness to environmental pH change were successfully manufactured. The concentration of QCT@ZIF-8 in the resin system was a key factor to maintain an optimal DC plateau and rate of polymerization. Essentially, one-step encapsulation of QCT in biocompatible ZIF-8 matrices can be easily achieved, and QCT@ZIF-8 microparticles proved as smart platforms to carry bioactive compounds with potential use to prevent microbial and enzymatic degradation of hard tissues and extracellular matrix components.

17.
J Nat Prod ; 82(9): 2387-2399, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31433178

RESUMEN

Aimed at exploring the dentin biomodification potential of proanthocyanidins (PACs) for the development of dental biomaterials, this study reports the phytochemical and dental evaluation of nine B-type PACs from grape seed extract (GSE). Out of seven isolated dimers (1-7), four new compounds (2, 3, 5, and 6) involved relatively rare ent-catechin or ent-epicatechin monomeric flavan-3-ol units. Low-temperature NMR analyses conducted along with phloroglucinolysis and electronic circular dichroism enabled unequivocal structural characterization and stereochemical assignment. Additionally, one known (8) and one new (9) B-type trimer were characterized. Differential 13C NMR chemical shifts (Δδ) were used to determine the absolute configuration of 9, relative to the dimers 1 and 2 as the possible constituent subunits. Compared to the dimers, the trimers showed superior dentin biomodification properties. The dimers, 1-7, exhibited pronounced differences in their collagenase inhibitory activity, while enhancing dentin stiffness comparably. This suggests that PAC structural features such as the degree of polymerization, relative and absolute configuration have a differential influence on enhancement of dentin biomechanical and biostability. As mechanical enhancement to dentin and resistance to proteolytic biodegradation are both essential properties functional and stable dentin substrate, the structurally closely related PACs suggest a new metric, the dentin biomodification potential (DBMP) that may rationalize both properties.


Asunto(s)
Biopolímeros/química , Biotina/química , Proantocianidinas/química
18.
Dent Mater ; 35(6): 900-908, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975484

RESUMEN

OBJECTIVES: Surface conditioning of enamel and dentin is a key step during adhesive restorative procedures and strategies. The aim of this study was to investigate the effectiveness of five α-hydroxy-acids (AHAs) as enamel and dentin surface etchants. METHODS: Enamel and dentin specimens were prepared from human molars to determine the depth of demineralization by optical profilometry (Δz), the resin bond strength to enamel and dentin (µTBS), the micro-permeability of dentin-resin interfaces, and the gelatinolytic activity of dentin matrix induced by AHAs [glycolic (GA), lactic (LA), citric (CA), malic (MI) and tartaric (TA)] and controls [phosphoric (PA) and maleic (MA)]. All acids were prepared at 35% concentration. Adhesion studies employed Adper Single Bond Plus bonding system. Data were individually processed and analyzed by ANOVA, post-hoc tests and Pearson correlations (α = 0.05). RESULTS: AHA exhibited statistically lower depth of demineralization of enamel and dentin (average 4 fold) than controls (p < 0.001). In enamel, MA and PA etching resulted in higher µTBS than AHA groups (p < 0.001). In dentin, GA, TA, CI and LA etching resulted in statistically similar µTBS than PA (p < 0.05). The hybrid-layer (HL) thickness and interfacial micro-permeability intensity were statistically lower for AHA groups (p < 0.05). A significant positive correlation was observed between the intensity of micro-permeability and the thickness of HL (p < 0.05). AHA etchants elicited lower dentin enzymatic activity than controls (p < 0.05). SIGNIFICANCE: AHAs effectively etched enamel and dentin surfaces. In particular, GA and TA resulted in suitable µTBS and sealing ability as well as induced less gelatinolytic activity in dentin than PA and MA.


Asunto(s)
Recubrimiento Dental Adhesivo , Esmalte Dental , Dentina , Recubrimientos Dentinarios , Humanos , Hidroxiácidos , Ensayo de Materiales , Ácidos Fosfóricos , Cementos de Resina , Resistencia a la Tracción
19.
Odontology ; 107(3): 316-323, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30710179

RESUMEN

Proteoglycans are biomacromolecules with significant biomineralization and structural roles in the dentin extracellular matrix. This study comprehensively assessed the mechanical properties and morphology of the dentin extracellular matrix following chemical removal of proteoglycans to elucidate the structural roles of proteoglycans in dentin. Dentin extracellular matrix was prepared from extracted teeth after complete tissue demineralization. Chemical removal of proteoglycans was carried-out using guanidine hydrochloride for up to 10 days. The removal of proteoglycans was determined by dimethylmethylene blue colorimetric assay and histological staining analyses using transmission electron microscopy and optical microscopy. The modulus of elasticity of dentin matrix was determined by a 3-point bending test method. Partial removal of proteoglycans induced significant modifications to the dentin matrix, particularly to type I collagen. Removal of proteoglycans significantly decreased the modulus of elasticity of dentin extracellular matrix (p < 0.0001). In conclusion, the subtle disruption of proteoglycans induces pronounced changes to the collagen network packing and the bulk modulus of elasticity of dentin matrix.


Asunto(s)
Dentina , Proteoglicanos , Colágeno Tipo I , Matriz Extracelular , Microscopía Electrónica de Transmisión
20.
Dent Mater ; 35(2): 328-334, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30580969

RESUMEN

OBJECTIVES: The interactivity of proanthocyanidins (PACs) with collagen modulates dentin matrix biomechanics and biostability. Herein, PAC extracts selected based on structural diversity were investigated to determine key PAC features driving sustained effects on dentin matrices over a period of 18months. METHODS: The chemical profiles of PAC-rich plant sources, Pinus massoniana (PM), Cinnamomum verum (CV) and Hamamelis virginiana (HV) barks, as well as Vitis vinifera (VV) seeds, were obtained by diol HPLC analysis after partitioning of the extracts between methyl acetate and water. Dentin matrices (n=15) were prepared from human molars to determine the apparent modulus of elasticity over 18months of aging. Susceptibility of the dentin matrix to degradation by endogenous and exogenous proteases was determined by presence of solubilized collagen in supernatant, and resistance to degradation by bacterial collagenase, respectively. Data were analyzed using ANOVA and Games-Howell post hoc tests (α=0.05). RESULTS: After 18months, dentin matrices modified by PM and CV extracts, containing only non-galloylated PACs, were highly stable mechanically (p<0.05). Dentin matrices treated with CV exhibited the lowest degradation by bacterial collagenase after 1h and 18months of aging (p<0.05), while dentin matrices treated with PM showed the least mass loss and collagen solubilization by endogenous enzymes over time (p<0.05). SIGNIFICANCE: Resistance against long-term degradation was observed for all experimental groups; however, the most potent and long-lasting dentin biomodification resulted from non-galloylated PACs.


Asunto(s)
Proantocianidinas , Cromatografía Líquida de Alta Presión , Colágeno , Colagenasas , Dentina , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA