Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 4(18): 3745-3755, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36133338

RESUMEN

Intermolecular cross-linking through electron irradiation is proven to be an effective tool to improve the mechanical and electronic properties of molecular self-assembled monolayers (SAMs), which is known to be a key player for material nanoarchitectonics. Here we study the effect of electron irradiation on the electronic transport properties of aromatic 5,5'-bis(mercaptomethyl)-2,2'-bipyridine (BPD; HS-CH2-(C5H3N)2-CH2-SH) and electron saturated 1-dodecanethiol (C12; CH3-(CH2)11-SH) molecules self-assembled on an Au (111) surface. We could not create any successful junctions for transport measurements for the electron irradiated C12 SAMs due the deterioration of such molecules with electron saturated nature. For the aromatic molecules, the electron bombardment results in significant reduction of the current despite the electron irradiation-induced intermolecular cross-linking, which should create extra transport channels for charge carriers. The current rectification also reduces after the electron bombardment. In order to interpret the experimental results and give right diagnostics behind the decrease of the current through the junction after electron irradiation, we supplement the experiment with quantum transport calculations using Green's functional formalism in combination with density functional theory. The simulation results show that the reduced current after electron irradiation can be related to the detachment of the molecules from the gold substrate and reattachment to other molecules. The formation of diamond-like structures due to intermolecular-cross linking can also be the reason for the reduced current obtained in the experiments. We have also considered the case when the BPD molecules get broken-conjugated due to the attachment of extra hydrogen atoms to the carbon backbone of the molecule. This structural modification also results in a significant decrease of the current. These findings can be useful in understanding the processes during the electron irradiation of molecular SAMs.

2.
J Chem Phys ; 156(17): 174701, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525674

RESUMEN

Selenium and tellurium have recently been proposed as alternatives to sulfur anchoring groups for self-assembly of organic molecules on noble-metal substrates. Here, we conduct quantum transport calculations for a single biphenyl molecule anchored on Au (111) electrodes with thiolate, selenolate, and telluride terminal groups taking into account both dispersive interactions and spin-orbit coupling. The numerical results show that the current through the junction decreases by increasing the atomic number of the chalcogen atom due to nanoscale charge localization as revealed in transmission eigenstates analysis. The effect of spin-orbit coupling becomes more pronounced by increasing the atomic number of the chalcogen atom. Clear current rectification is obtained when the molecule is asymmetrically connected to the electrodes using different chalcogen atoms. These findings can be useful in exploring transport properties of organic molecules adsorbed on metallic surfaces using alternatives to sulfur chalcogen atoms.

3.
Sci Rep ; 11(1): 12772, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140569

RESUMEN

The stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5'-bis(mercaptomethyl)-2,2'-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.

4.
RSC Adv ; 10(13): 7987-7993, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35492188

RESUMEN

Ordered carbon composite materials have great potential for practical applications in many areas such as energy conversion, quantum computing, biotechnologies, and electronics. In this work, we demonstrate a state-of-the-art self-assembly driven building block approach to create new layered carbon-metal composite materials with advanced properties. We fabricate molecular nanocomposites using self-assembled metal intercalated multi-layers of dithiol derivatives. The obtained structures are analysed using different characterization tools (such as X-ray photoelectron and Raman spectroscopy and atomic force microscopy) and their electronic transport properties are studied by four-point probe measurements supplemented by density functional theory calculations. This work demonstrates a new strategy for low-cost, high-yield and eco-friendly nanofabrication of hybrid organometallic membranes.

5.
Sci Rep ; 8(1): 2733, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426843

RESUMEN

Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical- and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse - unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors - the Josephson vortex loops - formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.

6.
Sci Rep ; 7(1): 12129, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935888

RESUMEN

The magnetic flux domains in the intermediate state of type-I superconductors are known to resemble fluid droplets, and their dynamics in applied electric current is often cartooned as a "dripping faucet". Here we show, using the time-depended Ginzburg-Landau simulations, that microfluidic principles hold also for the determination of the size of the magnetic flux-droplet as a function of the applied current, as well as for the merger or splitting of those droplets in the presence of the nanoengineered obstacles for droplet motion. Differently from fluids, the flux-droplets in superconductors are quantized and dissipative objects, and their pinning/depinning, nucleation, and splitting occur in a discretized form, all traceable in the voltage measured across the sample. At larger applied currents, we demonstrate how obstacles can cause branching of laminar flux streams or their transformation into mobile droplets, as readily observed in experiments.

7.
J Phys Condens Matter ; 28(47): 475001, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27633017

RESUMEN

Using density functional theory, we study the structure, electronic properties and partial charges of a new carbon allotrope-penta-graphene (PG)-substitutionally doped by Si, B and N. We found that the electronic bandgap of PG can be tuned down to 0.2 eV due to carbon substitutions. However, the value of the band gap depends on the type and location of the dopants. For example, the strongest reduction of the band gap is obtained for Si substitutions on the top (bottom) plane of PG, whereas the substitution in the middle plane of PG has a smaller effect on the band gap of the material. Surface termination with fluorine and hydroxyl groups results in an increase of the band gap together with considerable changes in electronic and atomic partial charge distribution in the system. Our findings, which are robust against the use of different exchange-correlation functionals, indicate the possibility of tuning the bandgap of the material to make it suitable for optoelectronic and photovoltaic applications.

8.
Phys Rev Lett ; 111(6): 067001, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23971602

RESUMEN

We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.

9.
Phys Rev Lett ; 109(10): 107001, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23005317

RESUMEN

Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T(c) nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.

10.
Phys Rev Lett ; 109(5): 057004, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-23006202

RESUMEN

We show in the case of a superconducting Nb ladder that a mesoscopic superconductor typically exhibits magnetoresistance oscillations whose amplitude and temperature dependence are different from those stemming from the Little-Parks effect. We demonstrate that these large resistance oscillations (as well as the monotonic background on which they are superimposed) are due to current-excited moving vortices, where the applied current in competition with the oscillating Meissner currents imposes or removes the barriers for vortex motion in an increasing magnetic field. Because of the ever present current in transport measurements, this effect should be considered in parallel with the Little-Parks effect in low-critical temperature (T(c)) samples, as well as with recently proposed thermal activation of dissipative vortex-antivortex pairs in high-T(c) samples.

11.
Phys Rev Lett ; 107(17): 177008, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22107571

RESUMEN

A Josephson phase shift can be induced in a Josephson junction by a strategically nearby pinned Abrikosov vortex (AV). For an asymmetric distribution of an imprinted phase along the junction (controlled by the position of the AV) such a simple system is capable of rectification of ac current in a broad and tunable frequency range. The resulting rectified voltage is a consequence of the directed motion of a Josephson antivortex which forms a pair with the AV when at local equilibrium. The proposed realization of the ratchet potential by an imprinted phase is more efficient than the asymmetric geometry of the junction itself, is easily realizable experimentally, and provides rectification even in the absence of an applied magnetic field.

12.
Phys Rev Lett ; 104(1): 017001, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20366384

RESUMEN

We demonstrate experimentally and theoretically that the dissipative state of superconducting samples with a periodic array of holes at high current densities consists of flux rivers resulting from a short-range attractive interaction between vortices. This dynamically induced vortex-vortex attraction results from the migration of quasiparticles out of the vortex core (kinematic vortices). We have directly visualized the formation of vortex chains by scanning Hall probe microscopy after freezing the dynamic state by a field cooling procedure at a constant bias current. Similar experiments carried out in a sample without holes show no hint of flux river formation. We shed light on this nonequilibrium phenomena modeled by time-dependent Ginzburg-Landau simulations.

13.
Phys Rev Lett ; 103(26): 267002, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20366337

RESUMEN

Intermediate-state flux structures in mesoscopic type-I superconductors are studied within the Ginzburg-Landau theory. In addition to well-established tubular and laminar structures, the strong confinement leads to the formation of (i) a phase of singly quantized vortices, which is typical for type-II superconductors and (ii) a ring of a normal domain at equilibrium. The stability region and the formation process of these intermediate-state structures are strongly influenced by the geometry of the sample.

14.
Phys Rev Lett ; 96(20): 207001, 2006 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-16803196

RESUMEN

Vortex configurations in superconducting films with regular arrays of antidots (holes) are calculated within the nonlinear Ginzburg-Landau theory. In addition to the well-established matching phenomena, we predict (i) the nucleation of giant-vortex states between the antidots, (ii) the combination of giant- and multivortices at rational matching fields, and (iii) for particular values of the vorticity, symmetry imposed creation of vortex-antivortex configurations.

15.
Phys Rev Lett ; 95(14): 147004, 2005 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-16241689

RESUMEN

A rather general enhancement of superconductivity is demonstrated in a hybrid structure consisting of a submicron superconducting (SC) sample combined with an in-plane ferromagnet (FM). The superconducting state resists much higher applied magnetic fields for both perpendicular polarities, as the applied field is screened by the FM. In addition, FM induces (in the perpendicular direction to its moment) two opposite currents in the SC plane, under and aside the magnet, respectively. Because of the compensation effects, superconductivity persists up to higher applied currents. With increasing current, the sample undergoes SC-"resistive"-normal state transitions through a mixture of vortex-antivortex and phase-slip phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...