Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Más filtros

Base de datos
Intervalo de año de publicación
Nat Nanotechnol ; 17(4): 390-395, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35210566


Twisted heterostructures of two-dimensional crystals offer almost unlimited scope for the design of new metamaterials. Here we demonstrate a room temperature ferroelectric semiconductor that is assembled using mono- or few-layer MoS2. These van der Waals heterostructures feature broken inversion symmetry, which, together with the asymmetry of atomic arrangement at the interface of two 2D crystals, enables ferroelectric domains with alternating out-of-plane polarization arranged into a twist-controlled network. The last can be moved by applying out-of-plane electrical fields, as visualized in situ using channelling contrast electron microscopy. The observed interfacial charge transfer, movement of domain walls and their bending rigidity agree well with theoretical calculations. Furthermore, we demonstrate proof-of-principle field-effect transistors, where the channel resistance exhibits a pronounced hysteresis governed by pinning of ferroelectric domain walls. Our results show a potential avenue towards room temperature electronic and optoelectronic semiconductor devices with built-in ferroelectric memory functions.

Science ; 375(6579): 430-433, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084955


In thermodynamic equilibrium, current in metallic systems is carried by electronic states near the Fermi energy, whereas the filled bands underneath contribute little to conduction. Here, we describe a very different regime in which carrier distribution in graphene and its superlattices is shifted so far from equilibrium that the filled bands start playing an essential role, leading to a critical-current behavior. The criticalities develop upon the velocity of electron flow reaching the Fermi velocity. Key signatures of the out-of-equilibrium state are current-voltage characteristics that resemble those of superconductors, sharp peaks in differential resistance, sign reversal of the Hall effect, and a marked anomaly caused by the Schwinger-like production of hot electron-hole plasma. The observed behavior is expected to be common to all graphene-based superlattices.

Sci Rep ; 10(1): 12178, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699332


Brain-inspired, neuromorphic computing aims to address the growing computational complexity and power consumption in modern von-Neumann architectures. Progress in this area has been hindered due to the lack of hardware elements that can mimic neuronal/synaptic behavior which form the fundamental building blocks for spiking neural networks (SNNs). In this work, we leverage the short/long term memory effects due to the electron trapping events in an atomically thin channel transistor that mimic the exchange of neurotransmitters and emulate a synaptic response. Re-doped (n-type) and Nb-doped (p-type) molybdenum di-sulfide (MoS2) field-effect transistors are examined using pulsed-gate measurements, which identify the time scales of electron trapping/de-trapping. The devices demonstrate promising trends for short/long term plasticity in the order of ms/minutes, respectively. Interestingly, pulse paired facilitation (PPF), which quantifies the short-term plasticity, reveal time constants (τ1 = 27.4 ms, τ2 = 725 ms) that closely match those from a biological synapse. Potentiation and depression measurements describe the ability of the synaptic device to traverse several analog states, where at least 50 conductance values are accessed using consecutive pulses of equal height and width. Finally, we demonstrate devices, which can emulate a well-known learning rule, spike time-dependent plasticity (STDP) which codifies the temporal sequence of pre- and post-synaptic neuronal firing into corresponding synaptic weights. These synaptic devices present significant advantages over iontronic counterparts and are envisioned to create new directions in the development of hardware for neuromorphic computing.

Disulfuros/química , Molibdeno/química , Niobio/química , Renio/química , Transistores Electrónicos , Biomimética/instrumentación , Biomimética/métodos , Grafito/química , Redes Neurales de la Computación , Dióxido de Silicio/química
ACS Appl Mater Interfaces ; 12(5): 6022-6029, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31920069


The advent of two-dimensional materials has opened a plethora of opportunities in accessing ultrascaled device dimensions for future logic and memory applications. In this work, we demonstrate that a single layer of large-area chemical vapor deposition-grown molybdenum disulfide (MoS2) sandwiched between two metal electrodes can be tuned to show multilevel nonvolatile resistive memory states with resistance values separated by 5 orders of magnitude. The switching process is unipolar and thermochemically driven requiring significant Joule heating in the reset process. Temperature-dependent electrical measurements coupled with semiclassical charge transport models suggest that the transport in these devices varies significantly in the initial (pristine) state, high resistance state, and low resistance state. In the initial state, the transport is a one-step direct tunneling (at low voltage biases) and Fowler Nordeim tunneling (at higher bias) with an effective barrier height of 0.33 eV, which closely matches the Schottky barrier at the MoS2/Au interface. In the high resistive state, trap-assisted tunneling provides a reasonable fit to experimental data for a trap height of 0.82 eV. Density functional theory calculations suggest the possibility of single- and double-sulfur vacancies as the microscopic origins of these trap sites. The temperature-dependent behavior of the set and reset process are explained by invoking the probability of defect (sulfur vacancy) creation and mobility of sulfur ions. Finally, conductive atomic force microscopy measurements confirm that the multifilamentary resistive memory effects are inherent to a single-crystalline MoS2 triangle and not necessarily dependent on grain boundaries. The insights suggested in this work are envisioned to open up possibilities for ultrascaled, multistate, resistive memories for next-generation digital memory and neuromorphic applications.

ACS Omega ; 4(17): 17487-17493, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31656920


Forming gas annealing is a common process step used to improve the performance of devices based on transition-metal dichalcogenides (TMDs). Here, the impact of forming gas anneal is investigated for PtSe2-based devices. A range of annealing temperatures (150, 250, and 350 °C) were used both in inert (0/100% H2/N2) and forming gas (5/95% H2/N2) environments to separate the contribution of temperature and ambient. The samples are electrically characterized by circular transfer length method structures, from which contact resistance and sheet resistance are analyzed. Ti and Ni are used as metal contacts. Ti does not react with PtSe2 at any given annealing step. In contrast to this, Ni reacts with PtSe2, resulting in a contact alloy formation. The results are supported by a combination of X-ray photoelectron spectroscopy, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and cross-sectional transmission electron microscopy. The work sheds light on the impact of forming gas annealing on TMD-metal interfaces, and on the TMD film itself, which could be of great interest to improve the contact resistance of TMD-based devices.

J Fluoresc ; 21(3): 1171-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21221747


Estrogen induced proliferation of existing mutant cells is widely understood to be the major risk determining factor in the development of breast cancer. Hence determination of the Estrogen Receptor[ER] status is of paramount importance. We have carried out the synthesis and characterization of a novel NIR fluorescent dye conjugate aimed at measuring ER+ve status in-vivo. The conjugate was synthesized by ester formation between 17-ß estradiol and a cyanine dye namely: bis-1, 1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. The replacement of the sodium ion in the ester by a larger glucosammonium ion was found to enhance the hydrophilicity and reduce the toxic effect on cell lines. The excitation and emission peaks for the dye were recorded as 750 and 788 nm respectively; ideal for non-invasive optical imaging owing to minimal tissue attenuation and auto-fluorescence at these wavelengths. The dye (NIRDC1) has a significant drop in plasma-protein binding therefore leading to marked improvement in pharmacokinetic profile such as dye evacuation in comparison to ICG. In addition the dye showed enhanced fluorescence quantum yield, molar extinction coefficient and linearity in fluorescence relative to ICG. This dye can be potentially used as a target specific exogenous contrast agent in molecular optical imaging for early detection of breast cancer.

Neoplasias de la Mama/diagnóstico , Carbocianinas , Estradiol , Imagen Molecular/métodos , Diagnóstico Precoz , Esterificación , Femenino , Humanos , Espectroscopía Infrarroja Corta