Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 23157, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848788

RESUMEN

Fire is an essential component of tropical savannas, driving key ecological feedbacks and functions. Indigenous manipulation of fire has been practiced for tens of millennia in Australian savannas, and there is a renewed interest in understanding the effects of anthropogenic burning on savanna systems. However, separating the impacts of natural and human fire regimes on millennial timescales remains difficult. Here we show using palynological and isotope geochemical proxy records from a rare permanent water body in Northern Australia that vegetation, climate, and fire dynamics were intimately linked over the early to mid-Holocene. As the El Niño/Southern Oscillation (ENSO) intensified during the late Holocene, a decoupling occurred between fire intensity and frequency, landscape vegetation, and the source of vegetation burnt. We infer from this decoupling, that indigenous fire management began or intensified at around 3 cal kyr BP, possibly as a response to ENSO related climate variability. Indigenous fire management reduced fire intensity and targeted understory tropical grasses, enabling woody thickening to continue in a drying climate.

2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941703

RESUMEN

Stable carbon and nitrogen isotope analyses are widely used to infer diet and mobility in ancient and modern human populations, potentially providing a means to situate humans in global food webs. We collated 13,666 globally distributed analyses of ancient and modern human collagen and keratin samples. We converted all data to a common "Modern Diet Equivalent" reference frame to enable direct comparison among modern human diets, human diets prior to the advent of industrial agriculture, and the natural environment. This approach reveals a broad diet prior to industrialized agriculture and continued in modern subsistence populations, consistent with the human ability to consume opportunistically as extreme omnivores within complex natural food webs and across multiple trophic levels in every terrestrial and many marine ecosystems on the planet. In stark contrast, isotope dietary breadth across modern nonsubsistence populations has compressed by two-thirds as a result of the rise of industrialized agriculture and animal husbandry practices and the globalization of food distribution networks.


Asunto(s)
Isótopos de Carbono/análisis , Dieta/historia , Salud Global/estadística & datos numéricos , Isótopos de Nitrógeno/análisis , Algoritmos , Huesos/química , Colágeno/análisis , Geografía , Cabello/química , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Humanos , Queratinas/análisis , Uñas/química
3.
Nat Hum Behav ; 5(10): 1303-1313, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33927367

RESUMEN

Archaeological data and demographic modelling suggest that the peopling of Sahul required substantial populations, occurred rapidly within a few thousand years and encompassed environments ranging from hyper-arid deserts to temperate uplands and tropical rainforests. How this migration occurred and how humans responded to the physical environments they encountered have, however, remained largely speculative. By constructing a high-resolution digital elevation model for Sahul and coupling it with fine-scale viewshed analysis of landscape prominence, least-cost pedestrian travel modelling and high-performance computing, we create over 125 billion potential migratory pathways, whereby the most parsimonious routes traversed emerge. Our analysis revealed several major pathways-superhighways-transecting the continent, that we evaluated using archaeological data. These results suggest that the earliest Australian ancestors adopted a set of fundamental rules shaped by physiological capacity, attraction to visually prominent landscape features and freshwater distribution to maximize survival, even without previous experience of the landscapes they encountered.


Asunto(s)
Migración Humana/tendencias , Dinámica Poblacional/tendencias , Antropología Física , Arqueología , Australia , Indicadores Ambientales , Geografía , Humanos , Sociobiología
4.
Nat Commun ; 12(1): 2440, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927195

RESUMEN

The peopling of Sahul (the combined continent of Australia and New Guinea) represents the earliest continental migration and settlement event of solely anatomically modern humans, but its patterns and ecological drivers remain largely conceptual in the current literature. We present an advanced stochastic-ecological model to test the relative support for scenarios describing where and when the first humans entered Sahul, and their most probable routes of early settlement. The model supports a dominant entry via the northwest Sahul Shelf first, potentially followed by a second entry through New Guinea, with initial entry most consistent with 50,000 or 75,000 years ago based on comparison with bias-corrected archaeological map layers. The model's emergent properties predict that peopling of the entire continent occurred rapidly across all ecological environments within 156-208 human generations (4368-5599 years) and at a plausible rate of 0.71-0.92 km year-1. More broadly, our methods and approaches can readily inform other global migration debates, with results supporting an exit of anatomically modern humans from Africa 63,000-90,000 years ago, and the peopling of Eurasia in as little as 12,000-15,000 years via inland routes.

5.
Glob Chang Biol ; 26(10): 5899-5913, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32686242

RESUMEN

The magnitude of the terrestrial carbon (C) sink may be overestimated globally due to the difficulty of accounting for all C losses across heterogeneous landscapes. More complete assessments of net landscape C balances (NLCB) are needed that integrate both emissions by fire and transfer to aquatic systems, two key loss pathways of terrestrial C. These pathways can be particularly significant in the wet-dry tropics, where fire plays a fundamental part in ecosystems and where intense rainfall and seasonal flooding can result in considerable aquatic C export (ΣFaq ). Here, we determined the NLCB of a lowland catchment (~140 km2 ) in tropical Australia over 2 years by evaluating net terrestrial productivity (NEP), fire-related C emissions and ΣFaq (comprising both downstream transport and gaseous evasion) for the two main landscape components, that is, savanna woodland and seasonal wetlands. We found that the catchment was a large C sink (NLCB 334 Mg C km-2  year-1 ), and that savanna and wetland areas contributed 84% and 16% to this sink, respectively. Annually, fire emissions (-56 Mg C km-2  year-1 ) and ΣFaq (-28 Mg C km-2  year-1 ) reduced NEP by 13% and 7%, respectively. Savanna burning shifted the catchment to a net C source for several months during the dry season, while ΣFaq significantly offset NEP during the wet season, with a disproportionate contribution by single major monsoonal events-up to 39% of annual ΣFaq was exported in one event. We hypothesize that wetter and hotter conditions in the wet-dry tropics in the future will increase ΣFaq and fire emissions, potentially further reducing the current C sink in the region. More long-term studies are needed to upscale this first NLCB estimate to less productive, yet hydrologically dynamic regions of the wet-dry tropics where our result indicating a significant C sink may not hold.


Asunto(s)
Carbono , Ecosistema , Australia , Carbono/análisis , Dióxido de Carbono/análisis , Pradera
6.
Ecol Appl ; 30(8): e02192, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32510803

RESUMEN

As tropical savannas are undergoing rapid conversion to other land uses, native C3 -C4 vegetation mixtures are often transformed to C3 - or C4 -dominant systems, resulting in poorly understood changes to the soil carbon (C) cycle. Conventional models of the soil C cycle are based on assumptions that more labile components of the heterogenous soil organic C (SOC) pool decompose at faster rates. Meanwhile, previous work has suggested that the C4 -derived component of SOC is more labile than C3 -derived SOC. Here we report on long-term (18 months) soil incubations from native and transformed tropical savannas of northern Australia. We test the hypothesis that, regardless of the type of land conversion, the C4 component of SOC will be preferentially decomposed. We measured changes in the SOC and pyrogenic carbon (PyC) pools, as well as the carbon isotope composition of SOC, PyC and respired CO2 , from 63 soil cores collected intact from different land use change scenarios. Our results show that land use change had no consistent effect on the size of the SOC pool, but strong effects on SOC decomposition rates, with slower decomposition rates at C4 -invaded sites. While we confirm that native savanna soils preferentially decomposed C4 -derived SOC, we also show that transformed savanna soils preferentially decomposed the newly added pool of labile SOC, regardless of whether it was C4 -derived (grass) or C3 -derived (forestry) biomass. Furthermore, we provide evidence that in these fire-prone landscapes, the nature of the PyC pool can shed light on past vegetation composition: while the PyC pool in C4 -dominant sites was mainly derived from C3 biomass, PyC in C3-dominant sites and native savannas was mainly derived from C4 biomass. We develop a framework to systematically assess the effects of recent land use change vs. prior vegetation composition.


Asunto(s)
Pradera , Suelo , Australia , Biomasa , Carbono/análisis
7.
Sci Rep ; 10(1): 4267, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32123272

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Proc Natl Acad Sci U S A ; 117(8): 3996-4006, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047039

RESUMEN

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice-climate feedbacks that further amplify warming.

9.
Rapid Commun Mass Spectrom ; 34(10): e8737, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31981268

RESUMEN

RATIONALE: Rapid, reliable isolation of pyrogenic carbon (PyC; also known as char, soot, black carbon, or biochar) for the determination of stable carbon isotope (δ13 C) composition and radiocarbon (14 C) dating is needed across multiple fields of research in geoscience, environmental science and archaeology. Many current techniques do not provide reliable isolation from contaminating organics and/or are relatively time-consuming. Hydrogen pyrolysis (HyPy) does provide reliable isolation of PyC, but the current methodology is time consuming. METHODS: We explored the potential for subjecting multiple samples to HyPy analysis by placing up to nine individual samples in custom-designed borosilicate sample vessels in a single reactor run. We tested for cross-contamination between samples in the same run using materials with highly divergent radiocarbon activities (~0.04-116.3 pMC), δ13 C values (-11.9 to -26.5‰) and labile carbon content. We determined 14 C/13 C using accelerator mass spectrometry and δ13 C values using an elemental analyser coupled to a continuous flow isotope ratio mass spectrometer. RESULTS: Very small but measurable transfer between samples of highly divergent isotope composition was detectable. For samples having a similar composition, this cross-contamination is considered negligible with respect to measurement uncertainty. For samples having divergent composition, we found that placing a sample vessel loaded with silica mesh adsorbent between samples eliminated measurable cross-contamination in all cases for both 14 C/13 C and δ13 C values. CONCLUSIONS: It is possible to subject up to seven samples to HyPy in the same reactor run for the determination of radiocarbon content and δ13 C value without diminishing the precision or accuracy of the results. This approach enables an increase in sample throughput of 300-600%. HyPy process background values are consistently lower than the nominal laboratory process background for quartz tube combustion in the NERC Radiocarbon Laboratory, indicating that HyPy may also be advantageous as a relatively 'clean' radiocarbon pre-treatment method.

10.
Sci Rep ; 9(1): 14419, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31595004

RESUMEN

We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.

11.
Sci Rep ; 9(1): 8220, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31209234

RESUMEN

The first peopling of Sahul (Australia, New Guinea and the Aru Islands joined at lower sea levels) by anatomically modern humans required multiple maritime crossings through Wallacea, with at least one approaching 100 km. Whether these crossings were accidental or intentional is unknown. Using coastal-viewshed analysis and ocean drift modelling combined with population projections, we show that the probability of randomly reaching Sahul by any route is <5% until ≥40 adults are 'washed off' an island at least once every 20 years. We then demonstrate that choosing a time of departure and making minimal headway (0.5 knots) toward a destination greatly increases the likelihood of arrival. While drift modelling demonstrates the existence of 'bottleneck' crossings on all routes, arrival via New Guinea is more likely than via northwestern Australia. We conclude that anatomically modern humans had the capacity to plan and make open-sea voyages lasting several days by at least 50,000 years ago.


Asunto(s)
Arqueología , Migración Humana , Océanos y Mares , Australia , Humanos , Nueva Guinea
12.
Nat Ecol Evol ; 3(7): 1057-1063, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209287

RESUMEN

The timing, context and nature of the first people to enter Sahul is still poorly understood owing to a fragmented archaeological record. However, quantifying the plausible demographic context of this founding population is essential to determine how and why the initial peopling of Sahul occurred. We developed a stochastic, age-structured model using demographic rates from hunter-gatherer societies, and relative carrying capacity hindcasted with LOVECLIM's net primary productivity for northern Sahul. We projected these populations to determine the resilience and minimum sizes required to avoid extinction. A census founding population of between 1,300 and 1,550 individuals was necessary to maintain a quasi-extinction threshold of ≲0.1. This minimum founding population could have arrived at a single point in time, or through multiple voyages of ≥130 people over ~700-900 years. This result shows that substantial population amalgamation in Sunda and Wallacea in Marine Isotope Stages 3-4 provided the conditions for the successful, large-scale and probably planned peopling of Sahul.


Asunto(s)
Arqueología , Demografía , Humanos
13.
Sci Rep ; 9(1): 6392, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024024

RESUMEN

Equatorial Southeast Asia is a key region for global climate change. Here, the Indo-Pacific Warm Pool (IPWP) is a critical driver of atmospheric convection that plays a dominant role in global atmospheric circulation. However, fluctuating sea-levels during the Pleistocene produced the most drastic land-sea area changes on Earth, with the now-drowned continent of Sundaland being exposed as a contiguous landmass for most of the past 2 million years. How vegetation responded to changes in rainfall that resulted from changing shelf exposure and glacial boundary conditions in Sundaland remains poorly understood. Here we use the stable carbon isotope composition (δ13C) of bat guano and High Molecular Weight n-alkanes, from Saleh Cave in southern Borneo to demonstrate that open vegetation existed during much the past 40,000 yrs BP. This location is at the southern equatorial end of a hypothesized 'savanna corridor' and the results provide the strongest evidence yet for its existence. The corridor would have operated as a barrier to east-west dispersal of rainforest species, and a conduit for north-south dispersal of savanna species at times of lowered sea level, explaining many modern biogeographic patterns. The Saleh Cave record also exhibits a strong correspondence with insolation and sea surface temperatures of the IPWP, suggesting a strong sensitivity of vegetation to tropical climate change on glacial/interglacial timeframes.

14.
Rapid Commun Mass Spectrom ; 32(12): 1008-1014, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29603458

RESUMEN

RATIONALE: Continuous measurement of stable O and H isotope compositions in water vapour requires automated calibration for remote field deployments. We developed a new low-cost device for calibration of both water vapour mole fraction and isotope composition. METHODS: We coupled a commercially available dew point generator (DPG) to a laser spectrometer and developed hardware for water and air handling along with software for automated operation and data processing. We characterised isotopic fractionation in the DPG, conducted a field test and assessed the influence of critical parameters on the performance of the device. RESULTS: An analysis time of 1 hour was sufficient to achieve memory-free analysis of two water vapour standards and the δ18 O and δ2 H values were found to be independent of water vapour concentration over a range of ≈20,000-33,000 ppm. The reproducibility of the standard vapours over a 10-day period was better than 0.14 ‰ and 0.75 ‰ for δ18 O and δ2 H values, respectively (1 σ, n = 11) prior to drift correction and calibration. The analytical accuracy was confirmed by the analysis of a third independent vapour standard. The DPG distillation process requires that isotope calibration takes account of DPG temperature, analysis time, injected water volume and air flow rate. CONCLUSIONS: The automated calibration system provides high accuracy and precision and is a robust, cost-effective option for long-term field measurements of water vapour isotopes. The necessary modifications to the DPG are minor and easily reversible.

15.
Glob Chang Biol ; 23(11): 4873-4883, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28560838

RESUMEN

Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon. Papua New Guinea (PNG) lies within one of the largest areas of contiguous tropical forest and is characterized by environmental gradients driven by altitude; yet, the region has been grossly understudied. Here, we present the first field assessment of aboveground biomass (AGB) across three main forest types of PNG using 193 plots stratified across 3,100-m elevation gradient. Unexpectedly, AGB had no direct relationship to rainfall, temperature, soil, or topography. Instead, natural disturbances explained most variation in AGB. While large trees (diameter at breast height > 50 cm) drove altitudinal patterns of AGB, resulting in a major peak in AGB (2,200-3,100 m) and some of the most carbon-rich forests at these altitudes anywhere. Large trees were correlated to a set of climatic variables following a hump-shaped curve. The set of "optimal" climatic conditions found in montane cloud forests is similar to that of maritime temperate areas that harbor the largest trees in the world: high ratio of precipitation to evapotranspiration (2.8), moderate mean annual temperature (13.7°C), and low intra-annual temperature range (7.5°C). At extreme altitudes (2,800-3,100 m), where tree diversity elsewhere is usually low and large trees are generally rare or absent, specimens from 18 families had girths >70 cm diameter and maximum heights 20-41 m. These findings indicate that simple AGB-climate-edaphic models may not be suitable for estimating carbon storage in forests where optimal climate niches exist. Our study, conducted in a very remote area, suggests that tropical montane forests may contain greater AGB than previously thought and the importance of securing their future under a changing climate is therefore enhanced.


Asunto(s)
Altitud , Biomasa , Clima , Bosques , Árboles/fisiología , Cambio Climático , Papúa Nueva Guinea
16.
Proc Natl Acad Sci U S A ; 113(41): 11477-11482, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671630

RESUMEN

The Pleistocene global dispersal of modern humans required the transit of arid and semiarid regions where the distribution of potable water provided a primary constraint on dispersal pathways. Here, we provide a spatially explicit continental-scale assessment of the opportunities for Pleistocene human occupation of Australia, the driest inhabited continent on Earth. We establish the location and connectedness of persistent water in the landscape using the Australian Water Observations from Space dataset combined with the distribution of small permanent water bodies (springs, gnammas, native wells, waterholes, and rockholes). Results demonstrate a high degree of directed landscape connectivity during wet periods and a high density of permanent water points widely but unevenly distributed across the continental interior. A connected network representing the least-cost distance between water bodies and graded according to terrain cost shows that 84% of archaeological sites >30,000 y old are within 20 km of modern permanent water. We further show that multiple, well-watered routes into the semiarid and arid continental interior were available throughout the period of early human occupation. Depletion of high-ranked resources over time in these paleohydrological corridors potentially drove a wave of dispersal farther along well-watered routes to patches with higher foraging returns.


Asunto(s)
Migración Humana , Agua , Arqueología , Australia , Geografía , Humanos , Modelos Teóricos , Recursos Hídricos
17.
Sci Data ; 3: 160053, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27434208

RESUMEN

The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery.


Asunto(s)
Bases de Datos Factuales , Fósiles , Vertebrados , Animales , Evolución Biológica
18.
Sci Total Environ ; 569-570: 869-879, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27288288

RESUMEN

The effects of organic amendments and nitrogen (N) fertilizer on yield and N use efficiency of barley were investigated on a Nitisol of the central Ethiopian highlands in 2014. The treatments were factorial combinations of no organic amendment, biochar (B), compost (Com), Com+B and co-composted biochar (COMBI) as main plots and five N fertilizer levels as sub-plots, with three replicates. Application of organic amendment and N fertilizer significantly improved yield, with grain yield increases of 60% from Com+B+69kgNha(-1) at Holetta and 54% from Com+92kgNha(-1) at Robgebeya, compared to the yield from the maximum N rate. The highest total N uptake was obtained from Com+B+92kgNha(-1) at Holetta (138kgha(-1)) and Com+92kgNha(-1) at Robgebeya (101kgha(-1)). The agronomic efficiency (yield increase per unit of N applied, AE), apparent recovery efficiency (increase in N uptake per unit of N applied, ARE) and physiological efficiency (yield increase per unit of N uptake, PE) responded significantly to organic amendments and N fertilizer. Mean AE and ARE were highest at B+23kgNha(-1) at Holetta and at B+23 and B+46kgNha(-1) at Robgebeya. The PE ranged from 19 to 33kggrainkg(-1) N uptake at Holetta and 29-48kggrainkg(-1) N uptake at Robgebeya. The effects of organic amendments and N fertilizer on AE, ARE and PE were greater at Robgebeya than at Holetta. The enhancement of N use efficiency through application of organic amendments emphasizes the importance of balanced crop nutrition, ensuring that barley crops are adequately supplied with N and other nutrients. Overall, the integration of both organic and inorganic amendments may optimize N uptake efficiency and reduce the amount of N fertilizer required for the sustainable barley production in the long-term.

19.
Sci Total Environ ; 550: 459-470, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26845182

RESUMEN

The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO3, NH4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term.


Asunto(s)
Agricultura/métodos , Contaminantes Atmosféricos/análisis , Carbón Orgánico , Fertilizantes , Australia , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Efecto Invernadero , Óxido Nitroso/análisis , Suelo/química
20.
Nat Commun ; 7: 10511, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26821754

RESUMEN

Late Quaternary megafauna extinctions impoverished mammalian diversity worldwide. The causes of these extinctions in Australia are most controversial but essential to resolve, because this continent-wide event presaged similar losses that occurred thousands of years later on other continents. Here we apply a rigorous metadata analysis and new ensemble-hindcasting approach to 659 Australian megafauna fossil ages. When coupled with analysis of several high-resolution climate records, we show that megafaunal extinctions were broadly synchronous among genera and independent of climate aridity and variability in Australia over the last 120,000 years. Our results reject climate change as the primary driver of megafauna extinctions in the world's most controversial context, and instead estimate that the megafauna disappeared Australia-wide ∼13,500 years after human arrival, with shorter periods of coexistence in some regions. This is the first comprehensive approach to incorporate uncertainty in fossil ages, extinction timing and climatology, to quantify mechanisms of prehistorical extinctions.


Asunto(s)
Cambio Climático , Extinción Biológica , Animales , Australia , Humanos , Paleontología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...