Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Más filtros

Base de datos
Intervalo de año de publicación
J Phys Chem A ; 117(39): 9840-7, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23862691


The cosmic abundance of hydrides depends critically on high-energy UV, X-ray, and particle irradiation. Here we study hydrides in star-forming regions where irradiation by the young stellar object can be substantial, and density and temperature can be much enhanced over interstellar values. Lines of OH, CH, NH, and SH and their ions OH(+), CH(+), NH(+), SH(+), H2O(+), and H3O(+) were observed in star-forming regions by the HIFI spectrometer onboard the Herschel Space Observatory. Molecular column densities are derived from observed ground-state lines, models, or rotational diagrams. We report here on two prototypical high-mass regions, AFGL 2591 and W3 IRS5, and compare them to chemical calculations by making assumptions on the high-energy irradiation. A model assuming no ionizing protostellar emission is compared with (i) a model assuming strong protostellar X-ray emission and (ii) a two-dimensional (2D) model including emission in the far UV (FUV, 6-13.6 eV), irradiating the outflow walls that separate the outflowing gas and infalling envelope material. We confirm that the effect of FUV in two-dimensional models with enlarged irradiated surfaces is clearly noticeable. A molecule that is very sensitive to FUV irradiation is CH(+), enhanced in abundance by more than 5 orders of magnitude. The HIFI observations of CH(+) lines agree with the two-dimensional FUV model by Bruderer et al., which computes abundances, non-LTE excitation, and line radiative transfer.20 It is concluded that CH(+) is a good FUV tracer in star-forming regions. The effect of potential X-ray irradiation is not excluded but cannot be demonstrated by the present data.

Science ; 340(6137): 1199-202, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23744942


The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter-wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star, originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.