Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Local Environ ; 29(5): 647-662, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38585648

RESUMEN

Participation in urban agriculture conducted through community gardens and allotments is known for its benefits to physical and mental health. Due to the recognition of these benefits, which include reduction of stress, depression and anxiety, such participation is increasingly being prescribed as a non-medical health intervention. Community gardens have the added advantage of immersion into a community, without the often-long waiting lists and level of commitment involved in allotment tenancies. What has not been explored is the demanding nature of the commitment required by volunteer coordinators, and ironically, the negative effects it can have on their wellbeing. In a study of food activism in Aberdeen, UK, we conducted 21 semi-structured interviews with participants from a range of bodies involved in the city's food growing projects. From the spectrum of food growers, we found that volunteer coordinators of community gardens experienced the greatest burdens on their time and wellbeing, with their demanding multi-functional roles leading to fatigue and feelings of over-commitment. Other problems encountered by community gardeners were over-reliance on grant funding and the disproportionate impacts of COVID closures on vulnerable groups. Policy interventions are required to reduce dependency on competitive grant funding and to support both coordinators and the long-term sustainability of community gardens.

3.
PLoS One ; 19(3): e0297686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507439

RESUMEN

Aluminium (Al) is toxic to most plants, but recent research has suggested that Al addition may stimulate growth and nutrient uptake in some species capable of accumulating high tissue Al concentrations. The physiological basis of this growth response is unknown, but it may be associated with processes linked to the regulation of carbon assimilation and partitioning by Al supply. To test alternative hypotheses for the physiological mechanism explaining this response, we examined the effects of increasing Al concentrations in the growth medium on tissue nutrient concentrations and carbon assimilation in two populations of the Al-accumulator Melastoma malabathricum. Compared to seedlings grown in a control nutrient solution containing no Al, mean rates of photosynthesis and respiration increased by 46% and 27%, respectively, total non-structural carbohydrate concentrations increased by 45%, and lignin concentration in roots decreased by 26% when seedlings were grown in a nutrient solution containing 2.0 mM Al. The concentrations of P, Ca and Mg in leaves and stems increased by 31%, 22%, and 26%, respectively, in response to an increase in nutrient solution Al concentration from 0 to 2.0 mM. Elemental concentrations in roots increased for P (114%), Mg (61%) and K (5%) in response to this increase in Al concentration in the nutrient solution. Plants derived from an inherently faster-growing population had a greater relative increase in final dry mass, net photosynthetic and respiration rates and total non-structural carbohydrate concentrations in response to higher external Al supply. We conclude that growth stimulation by Al supply is associated with increases in photosynthetic and respiration rates and enhanced production of non-structural carbohydrates that are differentially allocated to roots, as well as stimulation of nutrient uptake. These responses suggest that internal carbon assimilation is up-regulated to provide the necessary resources of non-structural carbohydrates for uptake, transport and storage of Al in Melastoma malabathricum. This physiological mechanism has only been recorded previously in one other plant species, Camellia sinensis, which last shared a common ancestor with M. malabathricum more than 120 million years ago.


Asunto(s)
Aluminio , Melastomataceae , Aluminio/análisis , Carbono/análisis , Fotosíntesis , Plantones , Raíces de Plantas , Carbohidratos/análisis , Hojas de la Planta/química
4.
Glob Chang Biol ; 30(3): e17209, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469989

RESUMEN

Active restoration through silvicultural treatments (enrichment planting, cutting climbers and liberation thinning) is considered an important intervention in logged forests. However, its ability to enhance regeneration is key for long-term recovery of logged forests, which remains poorly understood, particularly for the production and survival of seedlings in subsequent generations. To understand the long-term impacts of logging and restoration we tracked the diversity, survival and traits of seedlings that germinated immediately after a mast fruiting in North Borneo in unlogged and logged forests 30-35 years after logging. We monitored 5119 seedlings from germination for ~1.5 years across a mixed landscape of unlogged forests (ULs), naturally regenerating logged forests (NR) and actively restored logged forests via rehabilitative silvicultural treatments (AR), 15-27 years after restoration. We measured 14 leaf, root and biomass allocation traits on 399 seedlings from 15 species. Soon after fruiting, UL and AR forests had higher seedling densities than NR forest, but survival was the lowest in AR forests in the first 6 months. Community composition differed among forest types; AR and NR forests had lower species richness and lower evenness than UL forests by 5-6 months post-mast but did not differ between them. Differences in community composition altered community-weighted mean trait values across forest types, with higher root biomass allocation in NR relative to UL forest. Traits influenced mortality ~3 months post-mast, with more acquisitive traits and relative aboveground investment favoured in AR forests relative to UL forests. Our findings of reduced seedling survival and diversity suggest long time lags in post-logging recruitment, particularly for some taxa. Active restoration of logged forests recovers initial seedling production, but elevated mortality in AR forests lowers the efficacy of active restoration to enhance recruitment or diversity of seedling communities. This suggests current active restoration practices may fail to overcome barriers to regeneration in logged forests, which may drive long-term changes in future forest plant communities.


A restauração ativa por meio de tratamentos silviculturais (plantio de enriquecimento, corte de trepadeiras e desbaste) é considerada uma intervenção importante em florestas com exploração de madeira. No entanto, sua capacidade de melhorar a regeneração, essencial para a recuperação de longo prazo das florestas exploradas, permanece pouco compreendida, especialmente no que diz respeito à produção e sobrevivência de mudas em gerações subsequentes. Para compreender os impactos de longo prazo da exploração madeireira e da restauração, acompanhamos a diversidade, sobrevivência e características de plântulas que germinaram imediatamente após uma frutificação em massa no norte de Bornéu, em florestas com e sem exploração de madeira, 30-35 anos após o fim da extração. Monitoramos 5119 mudas desde a germinação por aproximadamente 1,5 anos em uma paisagem mista de florestas não exploradas (UL), florestas exploradas em regeneração natural (NR) e florestas exploradas restauradas ativamente por meio de tratamentos silviculturais de reabilitação (AR), 15-27 anos após a restauração. Medimos 14 traços funcionais de folhas, raízes e alocação de biomassa em 399 mudas de 15 espécies. Logo após a frutificação, as florestas UL e AR apresentaram densidades de mudas mais altas do que as florestas NR, mas a sobrevivência foi mais baixa nas florestas AR nos primeiros seis meses. A composição da comunidade diferiu entre os tipos de floresta; as florestas AR e NR teviram menor riqueza de espécies e menor equidade do que as florestas UL 5-6 meses após a frutificação, mas não diferiram entre si. As diferenças na composição da comunidade alteraram os valores de média ponderada pela comunidade das características entre os tipos de floresta com maior alocação de biomassa radicular nas florestas NR em relação às florestas UL. As características influenciaram a mortalidade aproximadamente 3 meses após a frutificação, com traços mais aquisitivos maior investimento em biomassa relativa acima do solo nas florestas AR em relação às florestas UL. Nossas descobertas de redução na sobrevivência e diversidade de plântulas sugerem que há longos retardos no recrutamento após o fim da exploração de madeira, particularmente para alguns táxons. A restauração ativa de florestas exploradas recupera a produção inicial de plântulas, mas a mortalidade elevada nas florestas AR diminui a eficácia da restauração ativa no melhorio do recrutamento e da diversidade das comunidades de mudas. Isso sugere que as práticas atuais de restauração ativa podem não superar as barreiras à regeneração em florestas exploradas, o que pode levar a mudanças de longo prazo nas comunidades florestais no futuro.


Asunto(s)
Agricultura Forestal , Árboles , Bosques , Plantones , Germinación , Clima Tropical
5.
Nat Ecol Evol ; 8(3): 400-410, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38200369

RESUMEN

Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers. Using data from 31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that the distribution and abundance of EcM-associated trees are independent of soil quality. Resource exchange differences among mycorrhizal partners, stemming from diverse evolutionary origins of mycorrhizal fungi, may decouple soil fertility from the advantage provided by mycorrhizal associations. Additionally, distinct historical biogeographies and diversification patterns have led to differences in forest composition and nutrient-acquisition strategies across three major tropical regions. Notably, Africa and Asia's lowland tropical forests have abundant EcM trees, whereas they are relatively scarce in lowland neotropical forests. A greater understanding of the functional biology of mycorrhizal symbiosis is required, especially in the lowland tropics, to overcome biases from assuming similarity to temperate and boreal regions.


Asunto(s)
Micorrizas , Árboles , Ecosistema , Suelo , Nutrientes
7.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857800

RESUMEN

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Asunto(s)
Micorrizas , Retroalimentación , Simbiosis , Plantas/microbiología , Suelo
9.
Sci Adv ; 9(37): eadf0938, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713486

RESUMEN

Experiments under controlled conditions have established that ecosystem functioning is generally positively related to levels of biodiversity, but it is unclear how widespread these effects are in real-world settings and whether they can be harnessed for ecosystem restoration. We used remote-sensing data from the first decade of a long-term, field-scale tropical restoration experiment initiated in 2002 to test how the diversity of planted trees affected recovery of a 500-ha area of selectively logged forest measured using multiple sources of satellite data. Replanting using species-rich mixtures of tree seedlings with higher phylogenetic and functional diversity accelerated restoration of remotely sensed estimates of aboveground biomass, canopy cover, and leaf area index. Our results are consistent with a positive relationship between biodiversity and ecosystem functioning in the lowland dipterocarp rainforests of SE Asia and demonstrate that using diverse mixtures of species can enhance their initial recovery after logging.


Asunto(s)
Ecosistema , Bosques , Filogenia , Bosque Lluvioso , Asia
10.
Nature ; 620(7975): 807-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612395

RESUMEN

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Clima Tropical , Naciones Unidas , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Mamíferos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/tendencias
11.
Ecology ; 104(9): e4133, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376710

RESUMEN

Flowering and fruiting phenology have been infrequently studied in the ever-wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever-wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction. Here we report on the first long-term study (18 years) of flowering and fruiting phenology in a diverse equatorial forest, Yasuní in eastern Ecuador, and the first to include a full suite of on-site monthly climate data. Using twice monthly censuses of 200 traps and >1000 species, we determined whether reproduction at Yasuní is seasonal at the community and species levels and analyzed the relationships between environmental variables and phenology. We also tested the hypothesis that seasonality in phenology, if present, is driven primarily by irradiance. Both the community- and species-level measures demonstrated strong reproductive seasonality at Yasuní. Flowering peaked in September-November and fruiting peaked in March-April, with a strong annual signal for both phenophases. Irradiance and rainfall were also highly seasonal, even though no month on average experienced drought (a month with <100 mm rainfall). Flowering was positively correlated with current or near-current irradiance, supporting our hypothesis that the extra energy available during the period of peak irradiance drives the seasonality of flowering at Yasuní. As Yasuní is representative of lowland ever-wet equatorial forests of northwestern Amazonía, we expect that reproductive phenology will be strongly seasonal throughout this region.


La fenología de floración y fructificación ha sido poco estudiada en los bosques bajos, lluviosos e hiperdiversos de la Amazonía noroccidental. Estos bosques neotropicales son típicamente llamados no estacionales debido a su clima siempre lluvioso y se asume que son no estacionales con respecto a la fenología. Los límites fisiológicos a la reproducción de las plantas impuestos por la disponibilidad de agua y luz en estos bosques son difíciles de desentrañar debido a que estas variables están a menudo correlacionadas temporalmente y las dos se estudian usualmente por separado, lo que desafía nuestra comprensión de su importancia relativa como desencadenantes de la reproducción. Este es el primer estudio de largo plazo (18 años) de la fenología de floración y fructificación en un bosque hiperdiverso de la Amazonía noroccidental ecuatorial, Yasuní, ubicado al este de Ecuador, y el primero en incluir un completo set de datos climáticos mensuales. Usando censos quincenales de 200 trampas y > 1000 especies, examinamos si la reproducción en Yasuní es estacional a nivel de comunidad y de especies y analizamos las relaciones de las variables ambientales con la fenología. También nos interesaba probar si la estacionalidad en la fenología, en caso de que esté presente está causada por la irradiancia. Tanto a nivel de comunidad como de especies, los datos demuestran una fuerte estacionalidad reproductiva en Yasuní. La floración alcanzó un máximo en septiembre-noviembre y la fructificación alcanzó un máximo en marzo-abril, con una fuerte y consistente señal anual en las dos fenofases. A su vez, la irradiancia y la lluvia fueron también marcadamente estacionales, aunque ningún mes en promedio experimentó sequía (i.e. <100 mm de lluvia). La floración fue positivamente correlacionada con la irradiación, apoyando nuestra hipótesis de que la energía extra disponible durante los periodos de mayor irradiación causa la estacionalidad de la floración en Yasuní. Debido a que Yasuní representa a los bosques ecuatoriales lluviosos de tierras bajas de la Amazonía noroccidental, esperamos que la fenología reproductiva sea fuertemente estacional a lo largo de esta región.


Asunto(s)
Bosques , Árboles , Árboles/fisiología , Ecuador , Reproducción/fisiología , Estaciones del Año , Clima Tropical
12.
Trends Plant Sci ; 28(9): 995-1003, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37087357

RESUMEN

Subtropical and tropical forests in Asia often comprise canopy dominant trees that form symbioses with ectomycorrhizal fungi, and species-rich understorey trees that form symbioses with arbuscular mycorrhizal fungi. We propose a virtuous phosphorus acquisition hypothesis to explain this distinct structure. The hypothesis is based on (i) seedlings being rapidly colonised by ectomycorrhizal fungi from established mycelial networks that generates positive feedback and resistance to pathogens, (ii) ectomycorrhizal fungi having evolved a suite of morphological, physiological, and molecular traits to enable them to capture phosphorus from a diversity of chemical forms, including organic forms, and (iii) allocation of photosynthate carbon from adult host plants to provide the energy needed to undertake these processes.


Asunto(s)
Bosques , Micorrizas , Simbiosis , Micorrizas/fisiología , Árboles , Fósforo , Microbiología del Suelo , Suelo/química
13.
Proc Natl Acad Sci U S A ; 120(3): e2214462120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623189

RESUMEN

Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account for the simultaneous losses of carbon from soil and necromass. Here, we used forest plots and an eddy covariance tower to quantify and partition net ecosystem CO2 exchange in Malaysian Borneo, a region that is a hot spot for deforestation and forest degradation. Our data represent the complete carbon budget for tropical forests measured throughout a logging event and subsequent recovery and found that they constitute a substantial and persistent net carbon source. Consistent with existing literature, our study showed a significantly greater woody biomass gain across moderately and heavily logged forests compared with unlogged forests, but this was counteracted by much larger carbon losses from soil organic matter and deadwood in logged forests. We estimate an average carbon source of 1.75 ± 0.94 Mg C ha-1 yr-1 within moderately logged plots and 5.23 ± 1.23 Mg C ha-1 yr-1 in unsustainably logged and severely degraded plots, with emissions continuing at these rates for at least one-decade post-logging. Our data directly contradict the default assumption that recovering logged and degraded tropical forests are net carbon sinks, implying the amount of carbon being sequestered across the world's tropical forests may be considerably lower than currently estimated.


Asunto(s)
Carbono , Ecosistema , Clima Tropical , Biomasa , Atmósfera , Suelo
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373930

RESUMEN

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Clima Tropical , Biodiversidad , Plantas , Asia
15.
Proc Biol Sci ; 289(1976): 20220739, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703055

RESUMEN

The role of conspecific density dependence (CDD) in the maintenance of species richness is a central focus of tropical forest ecology. However, tests of CDD often ignore the integrated effects of CDD over multiple life stages and their long-term impacts on population demography. We combined a 10-year time series of seed production, seedling recruitment and sapling and tree demography of three dominant Southeast Asian tree species that adopt a mast-fruiting phenology. We used these data to construct individual-based models that examine the effects of CDD on population growth rates (λ) across life-history stages. Recruitment was driven by positive CDD for all species, supporting the predator satiation hypothesis, while negative CDD affected seedling and sapling growth of two species, significantly reducing λ. This negative CDD on juvenile growth overshadowed the positive CDD of recruitment, suggesting the cumulative effects of CDD during seedling and sapling development has greater importance than the positive CDD during infrequent masting events. Overall, CDD varied among positive, neutral and negative effects across life-history stages for all species, suggesting that assessments of CDD on transitions between just two stages (e.g. seeds seedlings or juveniles mature trees) probably misrepresent the importance of CDD on population growth and stability.


Asunto(s)
Bosques , Árboles , Demografía , Plantones , Semillas , Clima Tropical
16.
New Phytol ; 235(6): 2183-2198, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35633119

RESUMEN

Fine-scale topographic-edaphic gradients are common in tropical forests and drive species spatial turnover and marked changes in forest structure and function. We evaluate how hydraulic traits of tropical tree species relate to vertical and horizontal spatial niche specialization along such a gradient. Along a topographic-edaphic gradient with uniform climate in Borneo, we measured six key hydraulic traits in 156 individuals of differing heights in 13 species of Dipterocarpaceae. We investigated how hydraulic traits relate to habitat, tree height and their interaction on this gradient. Embolism resistance increased in trees on sandy soils but did not vary with tree height. By contrast, water transport capacity increased on sandier soils and with increasing tree height. Habitat and height only interact for hydraulic efficiency, with slope for height changing from positive to negative from the clay-rich to the sandier soil. Habitat type influenced trait-trait relationships for all traits except wood density. Our data reveal that variation in the hydraulic traits of dipterocarps is driven by a combination of topographic-edaphic conditions, tree height and taxonomic identity. Our work indicates that hydraulic traits play a significant role in shaping forest structure across topographic-edaphic and vertical gradients and may contribute to niche specialization among dipterocarp species.


Asunto(s)
Bosques , Árboles , Borneo , Ecosistema , Suelo , Clima Tropical
17.
Nat Ecol Evol ; 6(7): 878-889, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35577983

RESUMEN

Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.


Asunto(s)
Cambio Climático , Ecosistema , Bosques , Árboles , Agua
18.
Curr Biol ; 32(8): 1754-1763.e6, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35276097

RESUMEN

Conservation strategies are rarely systematically evaluated, which reduces transparency, hinders the cost-effective deployment of resources, and hides what works best in different contexts. Using data on the iconic and critically endangered orangutan (Pongo spp.), we developed a novel spatiotemporal framework for evaluating conservation investments. We show that around USD 1 billion was invested between 2000 and 2019 into orangutan conservation by governments, nongovernmental organizations, companies, and communities. Broken down by allocation to different conservation strategies, we find that habitat protection, patrolling, and public outreach had the greatest return on investment for maintaining orangutan populations. Given the variability in threats, land-use opportunity costs, and baseline remunerations in different regions, there were differential benefits per dollar invested across conservation activities and regions. We show that although challenging from a data and analysis perspective, it is possible to fully understand the relationships between conservation investments and outcomes and the external factors that influence these outcomes. Such analyses can provide improved guidance toward a more effective biodiversity conservation. Insights into the spatiotemporal interplays between the costs and benefits driving effectiveness can inform decisions about the most suitable orangutan conservation strategies for halting population declines. Although our study focuses on the three extant orangutan species of Sumatra and Borneo, our findings have broad application for evidence-based conservation science and practice worldwide.


Asunto(s)
Especies en Peligro de Extinción , Pongo , Animales , Conservación de los Recursos Naturales , Indonesia , Pongo pygmaeus , Dinámica Poblacional
19.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35201608

RESUMEN

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Asunto(s)
Carbono , Clima Tropical , Biomasa , Temperatura , Madera
20.
Environ Manage ; 69(1): 140-153, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34586487

RESUMEN

Formulating effective management plans for addressing the impacts of invasive non-native species (INNS) requires the definition of clear priorities and tangible targets, and the recognition of the plurality of societal values assigned to these species. These tasks require a multi-disciplinary approach and the involvement of stakeholders. Here, we describe procedures to integrate multiple sources of information to formulate management priorities, targets, and high-level actions for the management of INNS. We follow five good-practice criteria: justified, evidence-informed, actionable, quantifiable, and flexible. We used expert knowledge methods to compile 17 lists of ecological, social, and economic impacts of lodgepole pines (Pinus contorta) and American mink (Neovison vison) in Chile and Argentina, the privet (Ligustrum lucidum) in Argentina, the yellow-jacket wasp (Vespula germanica) in Chile, and grasses (Urochloa brizantha and Urochloa decumbens) in Brazil. INNS plants caused a greater number of impacts than INNS animals, although more socio-economic impacts were listed for INNS animals than for plants. These impacts were ranked according to their magnitude and level of confidence on the information used for the ranking to prioritise impacts and assign them one of four high-level actions-do nothing, monitor, research, and immediate active management. We showed that it is possible to formulate management priorities, targets, and high-level actions for a variety of INNS and with variable levels of available information. This is vital in a world where the problems caused by INNS continue to increase, and there is a parallel growth in the implementation of management plans to deal with them.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Animales , Argentina , Brasil , Chile , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...