Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Ecol Lett ; 27(3): e14384, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38426584

RESUMEN

Although native species diversity is frequently reported to enhance invasion resistance, within-species diversity of native plants can also moderate invasions. While the positive diversity-invasion resistance relationship is often attributed to competition, indirect effects mediated through plant-soil feedbacks can also influence the relationship. We manipulated the genotypic diversity of an endemic species, Scirpus mariqueter, and evaluated the effects of abiotic versus biotic feedbacks on the performance of a global invader, Spartina alterniflora. We found that invader performance on live soils decreased non-additively with genotypic diversity of the native plant that trained the soils, but this reversed when soils were sterilized to eliminate feedbacks through soil biota. The influence of soil biota on the feedback was primarily associated with increased levels of microbial biomass and fungal diversity in soils trained by multiple-genotype populations. Our findings highlight the importance of plant-soil feedbacks mediating the positive relationship between genotypic diversity and invasion resistance.


Asunto(s)
Plantas , Suelo , Retroalimentación , Poaceae , Genotipo , Microbiología del Suelo , Especies Introducidas
2.
Sci Adv ; 10(8): eadj9395, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38381832

RESUMEN

It is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species composition, called biotic homogenization. Using a typology relating homogenization and differentiation to local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most common outcome, but with many instances of homogenization and differentiation. A weak homogenizing trend of a 0.3% increase in species shared among communities/year on average was driven by increased numbers of widespread (high occupancy) species and strongly associated with checklist data that have longer durations and large spatial scales. At smaller spatial and temporal scales, we show that homogenization and differentiation can be driven by changes in the number and spatial distributions of both rare and common species. The multiscale perspective introduced here can help identify scale-dependent drivers underpinning biotic differentiation and homogenization.


Asunto(s)
Biodiversidad
3.
Am Nat ; 203(1): E1-E18, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38207141

RESUMEN

AbstractLinking species traits with the variation in species assemblages across habitats has often proved useful for developing a more mechanistic understanding of species distributions in metacommunities. However, summarizing the rich tapestry of a species in all of its nuance with a few key ecological traits can also lead to an abstraction that provides less predictability than when using taxonomy alone. As a further complication, taxonomic and functional diversities can be inequitably compared, either by integrating taxonomic-level information into the calculation of how functional aspects of communities vary or by detecting spurious trait-environment relationships. To remedy this, we here synthesize analyses of 80 datasets on different taxa, ecosystems, and spatial scales that include information on abundance or presence/absence of species across sites with variable environmental conditions and the species' traits. By developing analyses that treat functional and taxonomic diversity equitably, we ask when functional diversity helps to explain metacommunity structure. We found that patterns of functional diversity explained metacommunity structure and response to environmental variation in only 25% of the datasets using a multitrait approach but up to 59% using a single-trait approach. Nevertheless, an average of only 19% (interquartile range = 0%-29%) of the traits showed a significant signal across environmental gradients. Species-level traits, as typically collected and analyzed through functional diversity patterns, often do not bring predictive advantages over what the taxonomic information already holds. While our assessment of a limited advantage of using traits to explain variation in species assemblages was largely true across ecosystems, traits played a more useful role in explaining variation when many traits were used and when trait constructs were more related to species' status, life history, and mobility. We propose future research directions to make trait-based approaches and data more helpful for inference in metacommunity ecology.


Asunto(s)
Biodiversidad , Ecosistema , Fenotipo
4.
J Anim Ecol ; 93(1): 57-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37975479

RESUMEN

The island species-area relationship (ISAR) describes how species richness increases with increasing area of a given island or island-like habitat, such as freshwater lakes. While the ISAR is one of the most common phenomena observed in ecology, there is variation in both the form of the relationship and its underlying mechanisms. We compiled a global data set of benthic macroinvertebrates from 524 shallow freshwater lakes, ranging from 1 to 293,300 ha in area. We used individual-based rarefaction to determine the degree to which ISAR was influenced by mechanisms other than passive sampling (larger islands passively sample more individuals from the regional pool and, therefore, have more species than smaller islands), which would bias results away from expected relationships between rarefied species richness (and other measures that capture relative abundances) and lake area. We also examined how climate may alter the shape of the ISARs. We found that both rarefied species richness (the number of species standardized by area or number of individuals) and a measure of evenness emphasizing common species exhibit shallow slopes in relationships with lake area, suggesting that the expected ISARs in these lakes most likely result from passive sampling. While there was considerable variation among ISARs across the investigated lakes, we found an overall positive rarefied ISAR for lakes in warm (i.e. tropical/subtropical) regions (n = 195), and in contrast, an overall negative rarefied ISAR in cool (i.e. north temperate) lakes (n = 329). This suggested that mechanisms beyond passive sampling (e.g. colonization-extinction dynamics and/or heterogeneity) were more likely to operate in warm lakes. One possible reason for this difference is that the area-dependent intensity of fish predation, which can lead to flatter ISARs, is weaker in warmer relative to cooler lakes. Our study illustrates the importance of understanding both the pattern and potential processes underlying the ISARs of freshwater lakes in different climatic regions. Furthermore, it provides a baseline for understanding how further changes to the ecosystem (i.e. in lake area or climate) might influence biodiversity patterns.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Lagos , Peces , Ecología
5.
Nature ; 628(8007): 359-364, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38123681

RESUMEN

Studies have reported widespread declines in terrestrial insect abundances in recent years1-4, but trends in other biodiversity metrics are less clear-cut5-7. Here we examined long-term trends in 923 terrestrial insect assemblages monitored in 106 studies, and found concomitant declines in abundance and species richness. For studies that were resolved to species level (551 sites in 57 studies), we observed a decline in the number of initially abundant species through time, but not in the number of very rare species. At the population level, we found that species that were most abundant at the start of the time series showed the strongest average declines (corrected for regression-to-the-mean effects). Rarer species were, on average, also declining, but these were offset by increases of other species. Our results suggest that the observed decreases in total insect abundance2 can mostly be explained by widespread declines of formerly abundant species. This counters the common narrative that biodiversity loss is mostly characterized by declines of rare species8,9. Although our results suggest that fundamental changes are occurring in insect assemblages, it is important to recognize that they represent only trends from those locations for which sufficient long-term data are available. Nevertheless, given the importance of abundant species in ecosystems10, their general declines are likely to have broad repercussions for food webs and ecosystem functioning.

6.
Trends Ecol Evol ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37949795

RESUMEN

New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation. We conclude that novel community data offer many opportunities to advance our understanding of fundamental ecological processes, including community assembly, biotic interactions, micro- and macroevolution, and overall ecosystem functioning.

7.
Science ; 381(6662): 1067-1071, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37676959

RESUMEN

Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.


Asunto(s)
Biomasa , Tamaño Corporal , Animales , Fenotipo , Factores de Tiempo
8.
Trends Ecol Evol ; 38(11): 1085-1096, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37468343

RESUMEN

Advances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology. First, including low-density growth rates (LDGRs), a classic metric of coexistence, can improve abundance-based restoration goals, because abundances are sensitive to initial treatments and ongoing variability. Second, growth-rate partitioning, developed to identify coexistence mechanisms, can improve restoration practice by informing site selection and indicating necessary interventions (e.g., site amelioration or competitor removal). Finally, coexistence methods can improve restoration assessment, because initial growth rates indicate trajectories, average growth rates measure success, and growth partitioning highlights interventions needed in future.


Asunto(s)
Ecosistema , Modelos Biológicos , Ecología
9.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220199, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37246380

RESUMEN

Estimating biodiversity change across the planet in the context of widespread human modification is a critical challenge. Here, we review how biodiversity has changed in recent decades across scales and taxonomic groups, focusing on four diversity metrics: species richness, temporal turnover, spatial beta-diversity and abundance. At local scales, change across all metrics includes many examples of both increases and declines and tends to be centred around zero, but with higher prevalence of declining trends in beta-diversity (increasing similarity in composition across space or biotic homogenization) and abundance. The exception to this pattern is temporal turnover, with changes in species composition through time observed in most local assemblages. Less is known about change at regional scales, although several studies suggest that increases in richness are more prevalent than declines. Change at the global scale is the hardest to estimate accurately, but most studies suggest extinction rates are probably outpacing speciation rates, although both are elevated. Recognizing this variability is essential to accurately portray how biodiversity change is unfolding, and highlights how much remains unknown about the magnitude and direction of multiple biodiversity metrics at different scales. Reducing these blind spots is essential to allow appropriate management actions to be deployed. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Asunto(s)
Biodiversidad , Ecosistema , Humanos
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220182, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37246383

RESUMEN

The causes of biodiversity change are of great scientific interest and central to policy efforts aimed at meeting biodiversity targets. Changes in species diversity and high rates of compositional turnover have been reported worldwide. In many cases, trends in biodiversity are detected, but these trends are rarely causally attributed to possible drivers. A formal framework and guidelines for the detection and attribution of biodiversity change is needed. We propose an inferential framework to guide detection and attribution analyses, which identifies five steps-causal modelling, observation, estimation, detection and attribution-for robust attribution. This workflow provides evidence of biodiversity change in relation to hypothesized impacts of multiple potential drivers and can eliminate putative drivers from contention. The framework encourages a formal and reproducible statement of confidence about the role of drivers after robust methods for trend detection and attribution have been deployed. Confidence in trend attribution requires that data and analyses used in all steps of the framework follow best practices reducing uncertainty at each step. We illustrate these steps with examples. This framework could strengthen the bridge between biodiversity science and policy and support effective actions to halt biodiversity loss and the impacts this has on ecosystems. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Asunto(s)
Biodiversidad , Ecosistema
11.
Trends Ecol Evol ; 38(8): 736-748, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37003934

RESUMEN

Geodiversity - the abiotic heterogeneity of Earth's (sub)surface - is gaining recognition for its ecological links to biodiversity. However, theoretical and conceptual knowledge of geodiversity-trait diversity relationships is currently lacking and can improve understanding of abiotic drivers of community assembly. Here we synthesise the state of knowledge of these relationships. We find that some components of geodiversity (e.g., topographic heterogeneity) elicit strong trait responses, whereas other components (e.g., substrate heterogeneity) have marginal effects in driving trait distributions. However, current knowledge is lacking in key aspects, including geodiversity's effect on trait-specific diversity and intraspecific variation. We call for the explicit inclusion of geodiversity when relating environmental drivers to trait diversity, taking advantage of the increasing availability of trait and geodiversity data.


Asunto(s)
Biodiversidad , Fenotipo
12.
Nat Commun ; 14(1): 1463, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927847

RESUMEN

While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change.


Asunto(s)
Ecosistema , Modelos Biológicos , Humanos , Factores de Tiempo , Agua Dulce
13.
Biol Rev Camb Philos Soc ; 98(4): 983-1002, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36859791

RESUMEN

Ecologists routinely use statistical models to detect and explain interactions among ecological drivers, with a goal to evaluate whether an effect of interest changes in sign or magnitude in different contexts. Two fundamental properties of interactions are often overlooked during the process of hypothesising, visualising and interpreting interactions between drivers: the measurement scale - whether a response is analysed on an additive or multiplicative scale, such as a ratio or logarithmic scale; and the symmetry - whether dependencies are considered in both directions. Overlooking these properties can lead to one or more of three inferential errors: misinterpretation of (i) the detection and magnitude (Type-D error), and (ii) the sign of effect modification (Type-S error); and (iii) misidentification of the underlying processes (Type-A error). We illustrate each of these errors with a broad range of ecological questions applied to empirical and simulated data sets. We demonstrate how meta-analysis, a widely used approach that seeks explicitly to characterise context dependence, is especially prone to all three errors. Based on these insights, we propose guidelines to improve hypothesis generation, testing, visualisation and interpretation of interactions in ecology.


Asunto(s)
Ecología , Modelos Estadísticos , Metaanálisis como Asunto
14.
Science ; 379(6636): 1054-1059, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893233

RESUMEN

Islands have long been recognized as distinctive evolutionary arenas leading to morphologically divergent species, such as dwarfs and giants. We assessed how body size evolution in island mammals may have exacerbated their vulnerability, as well as how human arrival has contributed to their past and ongoing extinctions, by integrating data on 1231 extant and 350 extinct species from islands and paleo islands worldwide spanning the past 23 million years. We found that the likelihood of extinction and of endangerment are highest in the most extreme island dwarfs and giants. Extinction risk of insular mammals was compounded by the arrival of modern humans, which accelerated extinction rates more than 10-fold, resulting in an almost complete demise of these iconic marvels of island evolution.


Asunto(s)
Efectos Antropogénicos , Biodiversidad , Evolución Biológica , Tamaño Corporal , Extinción Biológica , Mamíferos , Animales , Humanos , Islas , Mamíferos/anatomía & histología , Mamíferos/crecimiento & desarrollo
15.
Trends Ecol Evol ; 38(6): 532-544, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36806396

RESUMEN

Widespread evidence shows that local species richness (α-diversity) loss hampers the biomass production and stability of ecosystems. ß-Diversity, namely the variation of species compositions among different ecological communities, represents another important biodiversity component, but studies on how it drives ecosystem functioning show mixed results. We argue that to better understand the importance of ß-diversity we need to consider it across contexts. We focus on three scenarios that cause gradients in ß-diversity: changes in (i) abiotic heterogeneity, (ii) habitat isolation, and (iii) species pool richness. We show that across these scenarios we should not expect universally positive relationships between ß-diversity, production, and ecosystem stability. Nevertheless, predictable relationships between ß-diversity and ecosystem functioning do exist in specific contexts, and can reconcile seemingly contrasting empirical relationships.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa
16.
Ecol Lett ; 26(3): 349-350, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36806413
17.
Ecology ; 104(3): e3917, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36336908

RESUMEN

The species-area relationship (SAR) has over a 150-year-long history in ecology, but how its shape and origins vary across scales and organisms remains incompletely understood. This is the first subcontinental freshwater study to examine both these properties of the SAR in a spatially explicit way across major organismal groups (diatoms, insects, and fish) that differ in body size and dispersal capacity. First, to describe the SAR shape, we evaluated the fit of three commonly used models, logarithmic, power, and Michaelis-Menten. Second, we proposed a hierarchical framework to explain the variability in the SAR shape, captured by the parameters of the SAR model. According to this framework, scale and species group were the top predictors of the SAR shape, climatic factors (heterogeneity and median conditions) represented the second predictor level, and metacommunity properties (intraspecific spatial aggregation, γ-diversity, and species abundance distribution) the third predictor level. We calculated the SAR as a sample-based rarefaction curve using 60 streams within landscape windows (scales) in the United States, ranging from 160,000 to 6,760,000 km2 . First, we found that all models provided good fits (R2 ≥ 0.93), but the frequency of the best-fitting model was strongly dependent on organism, scale, and metacommunity properties. The Michaelis-Menten model was most common in fish, at the largest scales, and at the highest levels of intraspecific spatial aggregation. The power model was most frequent in diatoms and insects, at smaller scales, and in metacommunities with the lowest evenness. The logarithmic model fit best exclusively at the smallest scales and in species-poor metacommunities, primarily fish. Second, we tested our framework with the parameters of the most broadly used SAR model, the log-log form of the power model, using a structural equation model. This model supported our framework and revealed that the SAR slope was best predicted by scale- and organism-dependent metacommunity properties, particularly spatial aggregation, whereas the intercept responded most strongly to species group and γ-diversity. Future research should investigate from the perspective of our framework how shifts in metacommunity properties due to climate change may alter the SAR.


Asunto(s)
Ecología , Agua Dulce , Animales , Ríos , Peces , Ecosistema , Biodiversidad
18.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36278303

RESUMEN

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Plantas
19.
Ecol Evol ; 12(8): e9196, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35991281

RESUMEN

Patterns of biodiversity provide insights into the processes that shape biological communities around the world. Variation in species diversity along biogeographical or ecological gradients, such as latitude or precipitation, can be attributed to variation in different components of biodiversity: changes in the total abundance (i.e., more-individual effects) and changes in the regional species abundance distribution (SAD). Rarefaction curves can provide a tool to partition these sources of variation on diversity, but first must be converted to a common unit of measurement. Here, we partition species diversity gradients into components of the SAD and abundance using the effective number of species (ENS) transformation of the individual-based rarefaction curve. Because the ENS curve is unconstrained by sample size, it can act as a standardized unit of measurement when comparing effect sizes among different components of biodiversity change. We illustrate the utility of the approach using two data sets spanning latitudinal diversity gradients in trees and marine reef fish and find contrasting results. Whereas the diversity gradient of fish was mostly associated with variation in abundance (86%), the tree diversity gradient was mostly associated with variation in the SAD (59%). These results suggest that local fish diversity may be limited by energy through the more-individuals effect, while species pool effects are the larger determinant of tree diversity. We suggest that the framework of the ENS-curve has the potential to quantify the underlying factors influencing most aspects of diversity change.

20.
Ecology ; 103(12): e3820, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35869831

RESUMEN

Biodiversity metrics often integrate data on the presence and abundance of multiple species. Yet our understanding of covariation between changes to the numbers of individuals, the evenness of species relative abundances, and the total number of species remains limited. Using individual-based rarefaction curves, we show how expected positive relationships among changes in abundance, evenness and richness arise, and how they can break down. We then examined interdependencies between changes in abundance, evenness and richness in more than 1100 assemblages sampled either through time or across space. As predicted, richness changes were greatest when abundance and evenness changed in the same direction, and countervailing changes in abundance and evenness acted to constrain the magnitude of changes in species richness. Site-to-site differences in abundance, evenness, and richness were often decoupled, and pairwise relationships between these components across assemblages were weak. In contrast, changes in species richness and relative abundance were strongly correlated for assemblages varying through time. Temporal changes in local biodiversity showed greater inertia and stronger relationships between the component changes when compared to site-to-site variation. Overall, local variation in assemblage diversity was rarely due to repeated passive samples from an approximately static species abundance distribution. Instead, changing species relative abundances often dominated local variation in diversity. Moreover, how changing relative abundances combined with changes to total abundance frequently determined the magnitude of richness changes. Embracing the interdependencies between changing abundance, evenness and richness can provide new information to better understand biodiversity change in the Anthropocene.


Asunto(s)
Biodiversidad , Ecosistema , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...