Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.961
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 46(3): 730-735, 2021 Feb.
Artículo en Chino | MEDLINE | ID: mdl-33645041

RESUMEN

In recent years, the National Medical Products Administration has established a communication system for the process of drug R&D and registration. In this paper, the reform policies on establishing the communication system for drug evaluation in recent years were summarized, and the channels, processes, methods and types of communication were also collected. In addition, the communication status of new drugs of traditional Chinese medicine(TCM) was summarized according to the whole process of R&D, including summary of clinical practice, Investigational New Drug Applications, period of clinical trials, New Drug Applications, and post-marketing researches. Meanwhile, the current problems such as ineffective, inefficient, repeated or even no communication were analyzed, and relevant suggestions were proposed accordingly in order to provide reference for better communication on R&D and registration of new drugs of TCM.

2.
Neural Netw ; 137: 188-199, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33647536

RESUMEN

The encoder-decoder structure has been introduced into semantic segmentation to improve the spatial accuracy of the network by fusing high- and low-level feature maps. However, recent state-of-the-art encoder-decoder-based methods can hardly attain the real-time requirement due to their complex and inefficient decoders. To address this issue, in this paper, we propose a lightweight bilateral attention decoder for real-time semantic segmentation. It consists of two blocks and can fuse different level feature maps via two steps, i.e., information refinement and information fusion. In the first step, we propose a channel attention branch to refine the high-level feature maps and a spatial attention branch for the low-level ones. The refined high-level feature maps can capture more exact semantic information and the refined low-level ones can capture more accurate spatial information, which significantly improves the information capturing ability of these feature maps. In the second step, we develop a new fusion module named pooling fusing block to fuse the refined high- and low-level feature maps. This fusion block can take full advantages of the high- and low-level feature maps, leading to high-quality fusion results. To verify the efficiency of the proposed bilateral attention decoder, we adopt a lightweight network as the backbone and compare our proposed method with other state-of-the-art real-time semantic segmentation methods on the Cityscapes and Camvid datasets. Experimental results demonstrate that our proposed method can achieve better performance with a higher inference speed. Moreover, we compare our proposed network with several state-of-the-art non-real-time semantic segmentation methods and find that our proposed network can also attain better segmentation performance.

3.
Artículo en Inglés | MEDLINE | ID: mdl-33651129

RESUMEN

Nitrate leaching is severe in greenhouse where excessive nitrogen is often applied to maintain high crop productivities. In this study, we investigated the effects of carbon amendment in the subsoil on nitrate leaching and the emission of greenhouse gases (CH4 and N2O) using a soil column experiment. Carbon amendment resulted in over 39% reduction in nitrate leaching and 25.3% to 60.6% increase of total N content in the subsoil zone as compared to non-amended control. Strikingly, the abundance of nirS, nosZ, and 16S rRNA were higher in the treatment than the corresponding controls while no significant effect was detected for nirK. Carbon amendment explained 14%, 10%, and 4% of the variation in the community of nosZ, nirS, and nirK, respectively. It also considerably (more than 7 times) enriched genera such as Anaerovorax, Pseudobacteroides, Magnetospirillum, Prolixibacter, Sporobacter, Ignavibacterium, Syntrophobacter, Oxobacter, Hydrogenispora, Desulfosporomusa, Mangrovibacterium, and Sporomusa, as revealed by the analysis of 16S rRNA amplicon. Network analysis further uncovered that carbon amendment enriched three microbial hubs which mainly consists of positively correlated nirS, nosZ, and anaerobic bacterial populations. In summary, carbon amendment in the subsoil mitigated nitrate leaching and increased the nitrogen pool by possible activation of denitrifying and anaerobic bacterial populations. KEY POINTS: • Carbon amendment in subsoil reduced NO3- leaching by over 39% under high N input. • Carbon amendment increased the total N in subsoil from 25.3% to 60.6%. • Carbon amendment enriched nirS- and nosZ-type denitrifying bacteria in subsoil.

4.
Bioorg Chem ; 108: 104690, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33592485

RESUMEN

Novel withangulatin A (WA) derivatives were synthesized and evaluated for antiproliferative activity against four human cancer cell lines (U2OS, MDA-MB-231, HepG2, and A549). Among these derivatives, 10 exhibited the most potent antiproliferative activity, with an IC50 value of 74.0 nM against the human breast cancer cell line MDA-MB-231 and potency that was 70-fold that of WA (IC50 = 5.22 µM). Moreover, 10 caused G2-phase cell cycle arrest in a concentration-dependent manner and induced the apoptosis of MDA-MB-231 cells by increasing intracellular reactive oxygen species (ROS). Compound 10 showed a high selectivity index (SI = 267.03) for breast cancer MDA-MB-231 cells. These results suggest that 10 is a promising anticancer agent.

5.
BMC Cancer ; 21(1): 112, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33535978

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal malignancy of the biliary tract. Analysis of somatic mutational profiling can reveal new prognostic markers and actionable treatment targets. In this study, we explored the utility of genomic mutation signature and tumor mutation burden (TMB) in predicting prognosis in iCCA patients. METHODS: Whole-exome sequencing and corresponding clinical data were collected from the ICGC portal and cBioPortal database to detect the prognostic mutated genes and determine TMB values. To identify the hub prognostic mutant signature, we used Cox regression and Lasso feature selection. Mutation-related signature (MRS) was constructed using multivariate Cox regression. The predictive performances of MRS and TMB were assessed using Kaplan-Meier (KM) analysis and receiver operating characteristic (ROC). We performed a functional enrichment pathway analysis using gene set enrichment analysis (GSEA) for mutated genes. Based on the MRS, TMB, and the TNM stage, a nomogram was constructed to visualize prognosis in iCCA patients. RESULTS: The mutation landscape illustrated distributions of mutation frequencies and types in iCCA, and generated a list of most frequently mutated genes (such as Tp53, KRAS, ARID1A, and IDH1). Thirty-two mutated genes associated with overall survival (OS) were identified in iCCA patients. We obtained a six-gene signature using the Lasso and Cox method. AUCs for the MRS in the prediction of 1-, 3-, and 5-year OS were 0.759, 0.732, and 0.728, respectively. Kaplan-Meier analysis showed a significant difference in prognosis for patients with iCCA having a high and low MRS score (P < 0.001). GSEA was used to show that several signaling pathways, including MAPK, PI3K-AKT, and proteoglycan, were involved in cancer. Conversely, survival analysis indicated that TMB was significantly associated with prognosis. GSEA indicated that samples with high MRS or TMB also showed an upregulated expression of pathways involved in tumor signaling and the immune response. Finally, the predictive nomogram (that included MRS, TMB, and the TNM stage) demonstrated satisfactory performance in predicting survival in patients with iCCA. CONCLUSIONS: Mutation-related signature and TMB were associated with prognosis in patients with iCCA. Our study provides a valuable prognostic predictor for determining outcomes in patients with iCCA.

6.
Proteins ; 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33538038

RESUMEN

Deep learning has emerged as a revolutionary technology for protein residue-residue contact prediction since the 2012 CASP10 competition. Considerable advancements in the predictive power of the deep learning-based contact predictions have been achieved since then. However, little effort has been put into interpreting the black-box deep learning methods. Algorithms that can interpret the relationship between predicted contact maps and the internal mechanism of the deep learning architectures are needed to explore the essential components of contact inference and improve their explainability. In this study, we present an attention-based convolutional neural network for protein contact prediction, which consists of two attention mechanism-based modules: sequence attention and regional attention. Our benchmark results on the CASP13 free-modeling targets demonstrate that the two attention modules added on top of existing typical deep learning models exhibit a complementary effect that contributes to prediction improvements. More importantly, the inclusion of the attention mechanism provides interpretable patterns that contain useful insights into the key fold-determining residues in proteins. We expect the attention-based model can provide a reliable and practically interpretable technique that helps break the current bottlenecks in explaining deep neural networks for contact prediction. The source code of our method is available at https://github.com/jianlin-cheng/InterpretContactMap.

7.
Sensors (Basel) ; 21(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530295

RESUMEN

Commonly used sensors like accelerometers, gyroscopes, surface electromyography sensors, etc., which provide a convenient and practical solution for human activity recognition (HAR), have gained extensive attention. However, which kind of sensor can provide adequate information in achieving a satisfactory performance, or whether the position of a single sensor would play a significant effect on the performance in HAR are sparsely studied. In this paper, a comparative study to fully investigate the performance of the aforementioned sensors for classifying four activities (walking, tooth brushing, face washing, drinking) is explored. Sensors are spatially distributed over the human body, and subjects are categorized into three groups (able-bodied people, stroke survivors, and the union of both). Performances of using accelerometer, gyroscope, sEMG, and their combination in each group are evaluated by adopting the Support Vector Machine classifier with the Leave-One-Subject-Out Cross-Validation technique, and the optimal sensor position for each kind of sensor is presented based on the accuracy. Experimental results show that using the accelerometer could obtain the best performance in each group. The highest accuracy of HAR involving stroke survivors was 95.84 ± 1.75% (mean ± standard error), achieved by the accelerometer attached to the extensor carpi ulnaris. Furthermore, taking the practical application of HAR into consideration, a novel approach to distinguish various activities of stroke survivors based on a pre-trained HAR model built on healthy subjects is proposed, the highest accuracy of which is 77.89 ± 4.81% (mean ± standard error) with the accelerometer attached to the extensor carpi ulnaris.

8.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540857

RESUMEN

Yellow peel will adversely affect the appearance quality of cucumber fruit, but the metabolites and the molecular mechanism of pigment accumulation in cucumber peel remain unclear. Flavonoid metabolome and transcriptome analyses were carried out on the young peel and old peel of the color mutant L19 and the near-isogenic line L14. The results showed that there were 165 differential flavonoid metabolites in the old peel between L14 and L19. The total content of representative flavonoid metabolites in the old peel of L14 was 95 times that of L19, and 35 times that of young peel of L14, respectively. This might explain the difference of pigment accumulation in yellow peel. Furthermore, transcriptome analysis showed that there were 3396 and 1115 differentially expressed genes in the yellow color difference group (Young L14 vs. Old L14 and Old L14 vs. Old L19), respectively. These differentially expressed genes were significantly enriched in the MAPK signaling pathway-plant, plant-pathogen interaction, flavonoid biosynthesis and cutin, suberine and wax biosynthesis pathways. By analyzing the correlation between differential metabolites and differentially expressed genes, six candidate genes related to the synthesis of glycitein, kaempferol and homoeriodictyol are potentially important. In addition, four key transcription factors that belong to R2R3-MYB, bHLH51 and WRKY23 might be the major drivers of transcriptional changes in the peel between L14 and L19. Then, the expression patterns of these important genes were confirmed by qRT-PCR. These results suggested that the biosynthesis pathway of homoeriodictyol was a novel way to affect the yellowing of cucumber peel. Together, the results of this study provide a research basis for the biosynthesis and regulation of flavonoids in cucumber peel and form a significant step towards identifying the molecular mechanism of cucumber peel yellowing.

9.
J Colloid Interface Sci ; 591: 343-351, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33618292

RESUMEN

The nonsolvent induced phase separation (NIPS) method for ultrafiltration (UF) membrane fabrication relies on the extensive use of traditional solvents, thus ranking first in terms of ecological impacts among all the membrane fabrication steps. Methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean), as a green solvent, was utilized in this study to fabricate poly(vinyl chloride) (PVC) UF membranes. Subsequently, in post-treatment process, zwitterionic polymer, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (DMAPS), was grafted onto the membrane surface to enhance its anti-fouling properties using a greener surface-initiated activator regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) reaction. This novel method used low toxicity chemicals, avoiding the environmental hazards of traditional ATRP, and greatly improving the reaction efficiency. We systematically studied the grafting time effect on the resulted membranes using sodium alginate as the foulant, and found that short grafting time (30 min) achieved excellent membrane performance: pure water permeability of 2872 L m-2 h-1 bar-1, flux recovery ratio of 86.4% after 7-hour fouling test, and foulant rejection of 96.0%. This work discusses for the first time the greener procedures with lower environmental impacts in both fabrication and modification processes of PVC UF membranes.

10.
Environ Pollut ; 277: 116718, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33640812

RESUMEN

Both submerged macrophytes (SMs) and artificial macrophytes (AMs) have been widely used to improve water quality in eutrophic water. However, in heavily eutrophic aquatic ecosystems, the purification function of SMs is often restricted by the poor growth state due to competition from algae, while the purification function of AMs is often restricted by the limited carbon source supply for biofilm microbes attached to the AM surface. The objective of this study was to develop a new strategy to increase pollutant removal efficiency (RE) by combining the use of SMs and AMs. Pilot-scale microcosms, including treatments with both SMs and AMs (S&A), only SMs (SO) and only AMs (AO), were established to identify the performance of the new strategy. The results suggest that treatment S&A obtained REs of 88.9% for total nitrogen (TN) and 48.1% for chemical oxygen demand (COD); as comparison, treatments SO and AO obtained REs of 77.4% and 81.2% for TN and REs of -13.7% and 39.0% for COD, respectively. Compared with SO, the S&A treatment benefited SM growth in biomass, leaf chlorophyll concentration and root activity by inhibiting algae growth. In addition, compared with treatment AO, S&A increased the biofilm microbial biomass and the relative abundance of nitrifiers of families Nitrosomonadaceae and Nitrospira attached to AM surfaces. Therefore, by the mutual promotion of SMs and biofilms on AMs, the synergic application of SMs and AMs is a useful strategy for improving TN and COD REs in eutrophic water bodies such as rivers and constructed wetlands. A strategy was developed to increase nitrogen and COD removal in eutrophic water by the mutual promotion of submerged macrophytes and biofilms on artificial macrophytes.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33629806

RESUMEN

Asian countries are facing an increasing prevalence of metabolic syndrome (MetS), which may aggravate the burden of cardiovascular diseases in this region. MetS is closely associated with ambulatory blood pressure (BP). Patients with MetS, compared to those without, had a twofold higher risk of new-onset office, home, or ambulatory hypertension. Furthermore, the risk of new-onset MetS in patients with white-coat, masked and sustained hypertension was also doubled compared to normotensives. High-risk masked hypertension and blunted nighttime BP dipping are common in patients with MetS, suggesting perfect 24-hour BP control with long-acting antihypertensive drugs and early initiation of combination therapy might be especially important for patients with MetS.

12.
Elife ; 102021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33599614

RESUMEN

Insect pests negatively affect crop quality and yield; identifying new methods to protect crops against insects therefore has important agricultural applications. Our analysis of transgenic Arabidopsis thaliana plants showed that overexpression of pentacyclic triterpene synthase 1, encoding the key biosynthetic enzyme for the natural plant product (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), led to a significant resistance against a major insect pest, Plutella xylostella. DMNT treatment severely damaged the peritrophic matrix (PM), a physical barrier isolating food and pathogens from the midgut wall cells. DMNT repressed the expression of PxMucin in midgut cells, and knocking down PxMucin resulted in PM rupture and P. xylostella death. A 16S RNA survey revealed that DMNT significantly disrupted midgut microbiota populations and that midgut microbes were essential for DMNT-induced killing. Therefore, we propose that the midgut microbiota assists DMNT in killing P. xylostella. These findings may provide a novel approach for plant protection against P. xylostella.

13.
Signal Transduct Target Ther ; 6(1): 94, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637672

RESUMEN

The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.

14.
Nat Commun ; 12(1): 1305, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637723

RESUMEN

Imaging the spatial distribution of biomolecules is at the core of modern biology. The development of fluorescence techniques has enabled researchers to investigate subcellular structures with nanometer precision. However, multiplexed imaging, i.e. observing complex biological networks and interactions, is mainly limited by the fundamental 'spectral crowding' of fluorescent materials. Raman spectroscopy-based methods, on the other hand, have a much greater spectral resolution, but often lack the required sensitivity for practical imaging of biomarkers. Addressing the pressing need for new Raman probes, herein we present a series of Raman-active  nanoparticles (Rdots) that exhibit the combined advantages of ultra-brightness and compact sizes (~20 nm). When coupled with the emerging stimulated Raman scattering (SRS) microscopy, these Rdots are brighter than previously reported Raman-active organic probes by two to three orders of magnitude. We further obtain evidence supporting for SRS imaging of Rdots at single particle level. The compact size and ultra-brightness of Rdots allows immunostaining of specific protein targets (including cytoskeleton and low-abundant surface proteins) in mammalian cells and tissue slices with high imaging contrast. These Rdots thus offer a promising tool for a large range of studies on complex biological networks.

15.
Chem Commun (Camb) ; 57(17): 2148-2151, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522525

RESUMEN

A layered coordination polymer (CP) with the fine-tuned alignment of four diolefinic ligands has been designed by shifting the coordination site of the ligand. The trimeric and tetrameric cyclobutane derivatives were reversely achieved by the photoinitiated [2+2] cycloaddition of the CP due to the favorable Schmidt's distance. More interestingly, a dynamic fluorescence shift was observed during the photo-oligomerization and heat-cycloreversion of the CP system.

16.
J Basic Microbiol ; 61(3): 253-264, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33543807

RESUMEN

The heme oxygenase gene has antioxidant and cytoprotective effects in organisms, but no related research has been conducted in Ganoderma lucidum. For the first time, we cloned the HMX1 gene in G. lucidum. The CDS is 1092 bp in length and encodes 363 amino acids. The HMX1 protein was prokaryotically expressed and purified, and the enzyme activity of the purified protein was measured. The value of Km was 0.699 µM, and Vm was 81.9 nmol BV h-1 nmol-1 protein. By constructing the silencing vector pAN7-dual-HMX1i, the transformants HMX1i1 and HMX1i2 were obtained. Compared with the wild-type (WT), the average growth rate of HMX1i1 and HMX1i2 decreased by 31% and 23%, respectively, and the mycelium biomass decreased by 53% and 48%, respectively. Compared with the WT, the extracellular polysaccharide content of HMX1i1 and HMX1i2 increased by 59% and 51%, and the intracellular polysaccharide content increased by 24% and 22%, respectively. These results indicate that the HMX1 gene affects mycelial growth and polysaccharide synthesis in G. lucidum.

18.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562644

RESUMEN

Sperm-specific K+ ion channel (KSper) and Ca2+ ion channel (CatSper), whose elimination causes male infertility in mice, determine the membrane potential and Ca2+ influx, respectively. KSper and CatSper can be activated by cytosolic alkalization, which occurs during sperm going through the alkaline environment of the female reproductive tract. However, which intracellular pH (pHi) regulator functionally couples to the activation of KSper/CatSper remains obscure. Although Na+/H+ exchangers (NHEs) have been implicated to mediate pHi in sperm, there is a lack of direct evidence confirming the functional coupling between NHEs and KSper/CatSper. Here, 5-(N, N-dimethyl)-amiloride (DMA), an NHEs inhibitor that firstly proved not to affect KSper/CatSper directly, was chosen to examine NHEs function on KSper/CatSper in mouse sperm. The results of patch clamping recordings showed that, when extracellular pH was at the physiological level of 7.4, DMA application caused KSper inhibition and the depolarization of membrane potential when pipette solutions were not pH-buffered. In contrast, these effects were minimized when pipette solutions were pH-buffered, indicating that they solely resulted from pHi acidification caused by NHEs inhibition. Similarly, DMA treatment reduced CatSper current and intracellular Ca2+, effects also dependent on the buffer capacity of pH in pipette solutions. The impairment of sperm motility was also observed after DMA incubation. These results manifested that NHEs activity is coupled to the activation of KSper/CatSper under physiological conditions.

19.
Plant Physiol Biochem ; 161: 122-130, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581620

RESUMEN

Zinc oxide nanoparticles (ZnO-NPs) has been demonstrated to positively regulate plant tolerance to multiple environmental stresses. However, till date little information has been gained regarding the role of ZnO-NPs in the salt stress regulation in plants. Hence, the objective of our study was to investigate the role of ZnO-NPs in the regulation of salt tolerance in tomato (Lycopersicon esculentum Mill.). In this regard, the tomato plants were subjected to salt stress by using NaCl (150 mM) at the time of transplantation [15 days after sowing (DAS)]. Foliar application of ZnO-NPs at different levels viz., 10, 50 and 100 mg/L in the presence/absence of NaCl (150 mM) was carried out at 25 DAS and sampling was done at 35 DAS. Results of our study revealed that foliar spray of ZnO-NPs significantly increased shoot length (SL) and root length (RL), biomass, leaf area, chlorophyll content and photosynthetic attributes of tomato plants in the presence/absence of salt stress. Besides, the application of ZnO-NPs mitigates the negative impacts of salt stress on tomato growth, and enhanced protein content and antioxidative enzyme activity such as peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) under salt stress. In conclusion, the ZnO-NPs plays an important role in the alleviation of NaCl toxicity in tomato plants. Hence, the ZnO-NPs can be used to boost the growth performance and mitigate the adverse effects caused by NaCl in tomato.

20.
Artículo en Inglés | MEDLINE | ID: mdl-33605471

RESUMEN

Diabetic nephropathy (DN) is the major cause of chronic kidney disease and end-stage renal disease. Previous studies have demonstrated that long-chain omega-3 polyunsaturated fatty acids (PUFAs) might have therapeutic potential in reducing proteinuria in DN. However, the local level of eicosanoids derived from PUFAs in the plasma of DN patients remains unclear. This work aims to study the eicosanoid profile difference in plasma of DN patients and type 2 diabetes (T2D) without DN. A total of 27 T2D patients with similar diabetic duration were recruited and divided into T2D+DN group and T2D+NDN (non-DN) group based on urinary albumin excretion (UAE) detection. Using LC-MS/MS-based metabolomics, DN patients showed increased level of lipoxygenase (LOX) metabolites (5-HETE and LTB4) and decreased levels of eicosanoids derived according to the cytochrome P450s (CYP450) metabolic pathway (5,6-DHET; 14,15-DHET and 9,10-diHOME). Receiver operating characteristics and logistic regression analysis revealed increased level LOX metabolites and decreased level of CYP450 metabolites were significantly correlated with the incidence of DN in T2D patients. LOX and CYP450 metabolites correlated with DN incidence in T2D patients, which might be treatment targets for DN in T2D patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...