Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 7(1): 75, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127544

RESUMEN

Zoonotic Salmonella causes millions of human salmonellosis infections worldwide each year. Information about the source of the bacteria guides risk managers on control and preventive strategies. Source attribution is the effort to quantify the number of sporadic human cases of a specific illness to specific sources and animal reservoirs. Source attribution methods for Salmonella have so far been based on traditional wet-lab typing methods. With the change to whole genome sequencing there is a need to develop new methods for source attribution based on sequencing data. Four European datasets collected in Denmark (DK), Germany (DE), the United Kingdom (UK) and France (FR) are presented in this descriptor. The datasets contain sequenced samples of Salmonella Typhimurium and its monophasic variants isolated from human, food, animal and the environment. The objective of the datasets was either to attribute the human salmonellosis cases to animal reservoirs or to investigate contamination of the environment by attributing the environmental isolates to different animal reservoirs.

2.
Microb Genom ; 6(3)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32100710

RESUMEN

Over the last 35 years in the UK, the burden of Shiga toxin-producing Escherichia coli (STEC) O157:H7 infection has, during different periods of time, been associated with five different sub-lineages (1983-1995, Ia, I/IIa and I/IIb; 1996-2014, Ic; and 2015-2018, IIb). The acquisition of a stx2a-encoding bacteriophage by these five sub-lineages appears to have coincided with their respective emergences. The Oxford Nanopore Technologies (ONT) system was used to sequence, characterize and compare the stx-encoding prophages harboured by each sub-lineage to investigate the integration of this key virulence factor. The stx2a-encoding prophages from each of the lineages causing clinical disease in the UK were all different, including the two UK sub-lineages (Ia and I/IIa) circulating concurrently and causing severe disease in the early 1980s. Comparisons between the stx2a-encoding prophage in sub-lineages I/IIb and IIb revealed similarity to the prophage commonly found to encode stx2c, and the same site of bacteriophage integration (sbcB) as stx2c-encoding prophage. These data suggest independent acquisition of previously unobserved stx2a-encoding phage is more likely to have contributed to the emergence of STEC O157:H7 sub-lineages in the UK than intra-UK lineage to lineage phage transmission. In contrast, the stx2c-encoding prophage showed a high level of similarity across lineages and time, consistent with the model of stx2c being present in the common ancestor to extant STEC O157:H7 and maintained by vertical inheritance in the majority of the population. Studying the nature of the stx-encoding bacteriophage contributes to our understanding of the emergence of highly pathogenic strains of STEC O157:H7.

3.
Microb Genom ; 6(3)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32101514

RESUMEN

A large European multi-country Salmonella enterica serovar Enteritidis outbreak associated with Polish eggs was characterized by whole-genome sequencing (WGS)-based analysis, with various European institutes using different analysis workflows to identify isolates potentially related to the outbreak. The objective of our study was to compare the output of six of these different typing workflows (distance matrices of either SNP-based or allele-based workflows) in terms of cluster detection and concordance. To this end, we analysed a set of 180 isolates coming from confirmed and probable outbreak cases, which were representative of the genetic variation within the outbreak, supplemented with 22 unrelated contemporaneous S. enterica serovar Enteritidis isolates. Since the definition of a cluster cut-off based on genetic distance requires prior knowledge on the evolutionary processes that govern the bacterial populations in question, we used a variety of hierarchical clustering methods (single, average and complete) and selected the optimal number of clusters based on the consensus of the silhouette, Dunn2, and McClain-Rao internal validation indices. External validation was done by calculating the concordance with the WGS-based case definition (SNP-address) for this outbreak using the Fowlkes-Mallows index. Our analysis indicates that with complete-linkage hierarchical clustering combined with the optimal number of clusters, as defined by three internal validity indices, the six different allele- and SNP-based typing workflows generate clusters with similar compositions. Furthermore, we show that even in the absence of coordinated typing procedures, but by using an unsupervised machine learning methodology for cluster delineation, the various workflows that are currently in use by six European public-health authorities can identify concordant clusters of genetically related S. enterica serovar Enteritidis isolates; thus, providing public-health researchers with comparable tools for detection of infectious-disease outbreaks.

4.
Microb Genom ; 6(2)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32003708

RESUMEN

To establish the prevalence of mobile colistin resistance (mcr) genes amongst Salmonella enterica isolates obtained through public health surveillance in England (April 2014 to September 2017), 33 205 S. enterica genome sequences obtained from human, food, animal and environmental isolates were screened for the presence of mcr variants 1 to 8. The mcr-positive genomes were assembled, annotated and characterized according to plasmid type. Nanopore sequencing was performed on six selected isolates with putative novel plasmids, and phylogenetic analysis was used to provide an evolutionary context for the most commonly isolated clones. Fifty-two mcr-positive isolates were identified, of which 32 were positive for mcr-1, 19 for mcr-3 and 1 for mcr-5. The combination of Illumina and Nanopore sequencing identified three novel mcr-3 plasmids and one novel mcr-5 plasmid, as well as the presence of chromosomally integrated mcr-1 and mcr-3. Monophasic S. enterica serovar Typhimurium accounted for 27/52 (52 %) of the mcr-positive isolates, with the majority clustering in clades associated with travel to Southeast Asia. Isolates in these clades were associated with a specific plasmid range and an additional extended-spectrum beta-lactamase genotype. Routine whole-genome sequencing for public health surveillance provides an effective screen for novel and emerging antimicrobial determinants, including mcr. Complementary long-read technologies elucidated the genomic context of resistance determinants, offering insights into plasmid dissemination and linkage to other resistance genes.

5.
J Antimicrob Chemother ; 75(4): 883-889, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943013

RESUMEN

OBJECTIVES: To compare and evaluate phenotypic and genotypic methods for the detection of antimicrobial resistance (AMR) in Campylobacter jejuni and Campylobacter coli in England and Wales. METHODS: WGS data from 528 isolates of Campylobacter spp. (452 C. jejuni and 76 C. coli) from human (494), food (21) and environmental (2) sources, collected between January 2015 and December 2016, and from the PHE culture collection (11) were mapped to genes known to be associated with phenotypic resistance to antimicrobials in the genus. Phenotypic antibiotic susceptibility (erythromycin, ciprofloxacin, tetracycline, gentamicin and streptomycin) testing using an in-agar dilution method was performed on all isolates. RESULTS: Concordance between phenotypic resistance and the presence of corresponding AMR determinants was 97.5% (515/528 isolates). Only 13 out of 528 isolates (10 C. jejuni and 3 C. coli) had discordant interpretations for at least one of the five antibiotics tested, equating to a total of 15 (0.6%) discrepancies out of 2640 isolate/antimicrobial combinations. Seven discrepant results were genotypically resistant but phenotypically susceptible (major errors) and eight discrepant results were genotypically susceptible but phenotypically resistant (very major errors). CONCLUSIONS: The use of this bioinformatics approach for predicting AMR from WGS data for routine public health surveillance is a reliable method for real-time monitoring of changing AMR patterns in isolates of C. jejuni and C. coli.

6.
J Clin Microbiol ; 58(4)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-31969425

RESUMEN

Whole-genome sequencing has enhanced surveillance and facilitated detailed monitoring of the transmission of Shigella species in England. We undertook an epidemiological and phylogenetic analysis of isolates from all cases of shigellosis referred to Public Health England between 2015 and 2018 to explore recent strain characteristics and the transmission dynamics of Shigella species. Of the 4,950 confirmed cases of shigellosis identified during this period, the highest proportion of isolates was Shigella sonnei (54.4%), followed by S. flexneri (39.2%), S. boydii (4.1%), and S. dysenteriae (2.2%). Most cases were adults (82.9%) and male (59.5%), and 34.9% cases reported recent travel outside the United Kingdom. Throughout the study period, diagnoses of S. flexneri and S. sonnei infections were most common in men with no history of recent travel abroad. The species prevalence was not static, with cases of S. flexneri infection in men decreasing between 2015 and 2016 and the number of cases of S. sonnei infection increasing from 2017. Phylogenetic analysis showed this recent increase in S. sonnei infections was attributed to a novel clade that emerged from a Central Asia sublineage exhibiting resistance to ciprofloxacin and azithromycin. Despite changes in species prevalence, diagnoses of Shigella infections in England are persistently most common in adult males without a reported travel history, consistent with sexual transmission among men who have sex with men. The trend toward increasing rates of ciprofloxacin resistance in S. sonnei, in addition to plasmid-mediated azithromycin resistance, is of significant public health concern with respect to the transmission of multidrug-resistant gastrointestinal pathogens and the risk of treatment failures.

7.
PLoS One ; 15(1): e0228250, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32000262

RESUMEN

Whole genome sequencing (WGS) has been used routinely by Public Health England (PHE) for identification, surveillance and monitoring of resistance determinants in referred Salmonella isolates since 2015. We report the first identified case of extended-spectrum-ß-lactamase (ESBL) Salmonella enterica serovar Paratyphi A (S. Paratyphi A) isolated from a traveller returning to England from Bangladesh in November 2017. The isolate (440915) was resistant to ciprofloxacin and harboured both the mobile element ISEcp9 -blaCTX-M-15-hp-tnpA and blaTEM-191, associated with ESBL production. Phenotypic resistance was subsequently confirmed by Antimicrobial Susceptibility Testing (AST). S. Paratyphi A 440915 harboured an IncI1 plasmid previously reported to encode ESBL elements in Enterobacteriaceae and recently described in a S. Typhi isolate from Bangladesh. Results from this study indicate the importance of monitoring imported drug resistance for typhoidal salmonellae as ceftriaxone is the first line antibiotic treatment for complicated enteric fever in England. We conclude that WGS provides a rapid, accurate method for surveillance of drug resistance genes in Salmonella, leading to the first reported case of ESBL producing S. Paratyphi A and continues to inform the national treatment guidelines for management of enteric fever.


Asunto(s)
Fiebre Paratifoidea/diagnóstico , Factores R , Salmonella paratyphi A/genética , Salmonella paratyphi A/aislamiento & purificación , Viaje , Adulto , Bangladesh , ADN Bacteriano , Inglaterra , Humanos , Masculino , Fiebre Paratifoidea/microbiología , Salmonella paratyphi A/efectos de los fármacos , Secuenciación Completa del Genoma , Resistencia betalactámica/genética
8.
Front Public Health ; 7: 317, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824904

RESUMEN

The use of whole genome sequencing (WGS) as a method for supporting outbreak investigations, studying Salmonella microbial populations and improving understanding of pathogenicity has been well-described (1-3). However, performing WGS on a discrete dataset does not pose the same challenges as implementing WGS as a routine, reference microbiology service for public health surveillance. Challenges include translating WGS data into a useable format for laboratory reporting, clinical case management, Salmonella surveillance, and outbreak investigation as well as meeting the requirement to communicate that information in an understandable and universal language for clinical and public health action. Public Health England have been routinely sequencing all referred presumptive Salmonella isolates since 2014 which has transformed our approach to reference microbiology and surveillance. Here we describe an overview of the integrated methods for cross-disciplinary working, describe the challenges and provide a perspective on how WGS has impacted the laboratory and surveillance processes in England and Wales.

9.
Microb Genom ; 5(11)2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682221

RESUMEN

Since the 1970s, shigellosis has been reported as a sexually transmissible infection, and in recent years, genomic data have revealed the breadth of Shigella spp. transmission among global networks of men who have sex with men (MSM). In 2015, Public Health England (PHE) introduced routine whole-genome sequencing (WGS) of Shigella spp. to identify transmission clusters. However, limited behavioural information for the cases hampers interpretation. We investigated whether WGS can distinguish between clusters representing sexual transmission in MSM and clusters representing community (non-sexual) transmission to inform infection control. WGS data for Shigella flexneri from August 2015 to July 2017 were aggregated into single linkage clusters based on SNP typing using a range of SNP distances (the standard for Shigella surveillance at PHE is 10 SNPs). Clusters were classified as 'adult male', 'household', 'travel-associated' or 'community' using routine demographic data submitted alongside laboratory cultures. From August 2015 to March 2017, PHE contacted those with shigellosis as part of routine public-health follow-up and collected exposure data on a structured questionnaire, which for the first time included questions about sexual identity and behaviour. The questionnaire data were used to determine whether clusters classified as 'adult male' represented likely sexual transmission between men, thereby validating the use of the SNP clustering tool for informing appropriate public-health responses. Overall, 1006 S. flexneri cases were reported, of which 563 clustered with at least one other case (10-SNP threshold). Linked questionnaire data were available for 106 clustered cases, of which 84.0 % belonged to an 'adult male' cluster. At the 10-SNP threshold, 95.1 % [95 % confidence interval (CI) 88.0-98.1%] of MSM belonged to an 'adult male' cluster, while 73.2 % (95 % CI 49.1-87.5%) of non-MSM belonged to a 'community' or 'travel-associated' cluster. At the 25-SNP threshold, all MSM (95 % CI 96.0-100%) belonged to an 'adult male' cluster and 77.8 % (95 % CI 59.2-89.4%) of non-MSM belonged to a 'community' or 'travel-associated' cluster. Within one phylogenetic clade of S. flexneri, 9 clusters were identified (7 'adult male'; 2 'community') using a 10-SNP threshold, while a single 'adult male' cluster was identified using a 25-SNP threshold. Genotypic markers of azithromycin resistance were detected in 84.5 % (294/348) of 'adult male' cases and 20.9 % (9/43) of cases in other clusters (10-SNP threshold), the latter of which contained gay-identifying men who reported recent same-sex sexual contact. Our study suggests that SNP clustering can be used to identify Shigella clusters representing likely sexual transmission in MSM to inform infection control. Defining clusters requires a flexible approach in terms of genetic relatedness to ensure a clear understanding of underlying transmission networks.

10.
PLoS Negl Trop Dis ; 13(9): e0007620, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513580

RESUMEN

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever, a systemic human infection with a burden exceeding 20 million cases each year that occurs disproportionately among children in low and middle income countries. Antimicrobial therapy is the mainstay for treatment, but resistance to multiple agents is common. Here we report genotypes and antimicrobial resistance (AMR) determinants detected from routine whole-genome sequencing (WGS) of 533 S. Typhi isolates referred to Public Health England between April 2014 and March 2017, 488 (92%) of which had accompanying patient travel information obtained via an enhanced surveillance questionnaire. The majority of cases involved S. Typhi 4.3.1 (H58) linked with travel to South Asia (59%). Travel to East and West Africa were associated with genotypes 4.3.1 and 3.3.1, respectively. Point mutations in the quinolone resistance determining region (QRDR), associated with reduced susceptibility to fluoroquinolones, were very common (85% of all cases) but the frequency varied significantly by region of travel: 95% in South Asia, 43% in East Africa, 27% in West Africa. QRDR triple mutants, resistant to ciprofloxacin, were restricted to 4.3.1 lineage II and associated with travel to India, accounting for 23% of cases reporting travel to the country. Overall 24% of isolates were MDR, however the frequency varied significantly by region and country of travel: 27% in West Africa, 52% in East Africa, 55% in Pakistan, 24% in Bangladesh, 3% in India. MDR determinants were plasmid-borne (IncHI1 PST2 plasmids) in S. Typhi 3.1.1 linked to West Africa, but in all other regions MDR was chromosomally integrated in 4.3.1 lineage I. We propose that routine WGS data from travel-associated cases in industrialised countries could serve as informal sentinel AMR genomic surveillance data for countries where WGS is not available or routinely performed.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Salmonella typhi/genética , Fiebre Tifoidea/epidemiología , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Quinolonas/farmacología , Encuestas y Cuestionarios , Enfermedad Relacionada con los Viajes , Fiebre Tifoidea/microbiología , Secuenciación Completa del Genoma
11.
Front Genet ; 10: 763, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31543896

RESUMEN

Bacterial-host interactions are non-linear and actually threefold, involving significant selection through predatory lytic bacteriophages in the host environment. In studies of human and animal gut microbiome bacteria, it is important to consider phage in all host-pathogen interactions. We use an important zoonotic pathogen, Shiga toxigenic Escherichia coli (STEC) O157:H7, to investigate this. Our study provides evidence that phage resistance profiles are well maintained at the sub-lineage level with variation in profiles within sub-lineages uncommon. This indicates that phage resistance heterogeneity happened early on in the STEC O157:H7 natural history and that occasional "wobbles" do not often outcompete the stable lineage unless combined with a competitive advantage. We discuss an example of this in the acquisition of stx2a that, while an important virulence factor, also conveys increased phage cross-resistance. We also discuss the role of phage resistance in co-occurrence of the three stable lineages worldwide and whether differing phage resistance is maintaining diversity.

12.
Euro Surveill ; 24(36)2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31507266

RESUMEN

In spring 2016, Greece reported an outbreak caused by a previously undescribed Salmonella enterica subsp. enterica serotype (antigenic formula 11:z41:e,n,z15) via the Epidemic Intelligence Information System for Food- and Waterborne Diseases and Zoonoses (EPIS-FWD), with epidemiological evidence for sesame products as presumptive vehicle. Subsequently, Germany, Czech Republic, Luxembourg and the United Kingdom (UK) reported infections with this novel serotype via EPIS-FWD. Concerned countries in collaboration with the European Centre for Disease Prevention and Control (ECDC) and European Food Safety Authority (EFSA) adopted a common outbreak case definition. An outbreak case was defined as a laboratory-confirmed notification of the novel Salmonella serotype. Between March 2016 and April 2017, 47 outbreak cases were notified (Greece: n = 22; Germany: n = 13; Czech Republic: n = 5; Luxembourg: n = 4; UK: n = 3). Whole genome sequencing revealed the very close genetic relatedness of isolates from all affected countries. Interviews focusing on sesame product consumption, suspicious food item testing and trace-back analysis following Salmonella spp. detection in food products identified a company in Greece where sesame seeds from different countries were processed. Through European collaboration, it was possible to identify and recall sesame spread as one contaminated food item serving as vehicle of infection and trace it back to its origin.

13.
Gigascience ; 8(8)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31433830

RESUMEN

BACKGROUND: We aimed to compare Illumina and Oxford Nanopore Technology sequencing data from the 2 isolates of Shiga toxin-producing Escherichia coli (STEC) O157:H7 to determine whether concordant single-nucleotide variants were identified and whether inference of relatedness was consistent with the 2 technologies. RESULTS: For the Illumina workflow, the time from DNA extraction to availability of results was ∼40 hours, whereas with the ONT workflow serotyping and Shiga toxin subtyping variant identification were available within 7 hours. After optimization of the ONT variant filtering, on average 95% of the discrepant positions between the technologies were accounted for by methylated positions found in the described 5-methylcytosine motif sequences, CC(A/T)GG. Of the few discrepant variants (6 and 7 difference for the 2 isolates) identified by the 2 technologies, it is likely that both methodologies contain false calls. CONCLUSIONS: Despite these discrepancies, Illumina and Oxford Nanopore Technology sequences from the same case were placed on the same phylogenetic location against a dense reference database of STEC O157:H7 genomes sequenced using the Illumina workflow. Robust single-nucleotide polymorphism typing using MinION-based variant calling is possible, and we provide evidence that the 2 technologies can be used interchangeably to type STEC O157:H7 in a public health setting.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanotecnología , Polimorfismo de Nucleótido Simple , Escherichia coli Shiga-Toxigénica/genética , Alelos , Biología Computacional/métodos , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Genoma Bacteriano , Genómica/métodos , Genotipo , Humanos , Nanoporos , Filogenia , Escherichia coli Shiga-Toxigénica/clasificación , Flujo de Trabajo
14.
Front Microbiol ; 10: 1118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178839

RESUMEN

A multi drug resistant Salmonella enterica 4,[5],12:i- of sequence type 34 (monophasic S. Typhimurium ST34) is a current pandemic clone associated with livestock, particularly pigs, and numerous outbreaks in the human population. A large genomic island, termed SGI-4, is present in the monophasic Typhimurium ST34 clade and absent from other S. Typhimurium strains. SGI-4 consists of 87 open reading frames including sil and pco genes previously implicated in resistance to copper (Cu) and silver, and multiple genes predicted to be involved in mobilization and transfer by conjugation. SGI-4 was excised from the chromosome, circularized, and transferred to recipient strains of S. Typhimurium at a frequency influenced by stress induced by mitomycin C, and oxygen tension. The presence of SGI-4 was associated with increased resistance to Cu, particularly but not exclusively under anaerobic conditions. The presence of silCBA genes, predicted to encode an RND family efflux pump that transports Cu from the periplasm to the external milieu, was sufficient to impart the observed enhanced resistance to Cu, above that commonly associated with S. Typhimurium isolates. The presence of these genes resulted in the absence of Cu-dependent induction of pco genes encoding multiple proteins linked to Cu resistance, also present on SGI-4, suggesting that the system effectively limits the Cu availability in the periplasm, but did not affect SodCI-dependent macrophage survival.

15.
J Wildl Dis ; 55(4): 874-878, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31166852

RESUMEN

Two adult Great Spotted Woodpeckers (Dendrocopos major) from separate sites in Great Britain were examined postmortem in 2013 and 2016. A Salmonella sp. was isolated from multiple tissues in both birds. Histopathology and immunohistochemistry confirmed disseminated salmonellosis. Whole-genome sequencing and biochemical analyses putatively identified both isolates as a novel variant of Salmonella enterica subsp. enterica serovar Hessarek (S. Hessarek). Salmonellosis has seldom been reported in Piciformes, and never before in association with S. Hessarek infection. These findings, therefore, add to current knowledge regarding the range of wild bird species susceptible to this Salmonella serovar, and our understanding of the pathogens affecting Great Spotted Woodpeckers, in particular.


Asunto(s)
Enfermedades de las Aves/microbiología , Aves/microbiología , Salmonelosis Animal/microbiología , Salmonella/clasificación , Animales , Resultado Fatal , Femenino , Masculino
16.
PLoS Negl Trop Dis ; 13(6): e0007485, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31220112

RESUMEN

BACKGROUND: Salmonella enterica serovar Enteritidis is a cause of both poultry- and egg-associated enterocolitis globally and bloodstream-invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa (sSA). Distinct, multi-drug resistant genotypes associated with iNTS disease in sSA have recently been described, often requiring treatment with fluoroquinolone antibiotics. In industrialised countries, antimicrobial use in poultry production has led to frequent fluoroquinolone resistance amongst globally prevalent enterocolitis-associated lineages. METHODOLOGY/PRINCIPAL FINDINGS: Twenty seven S. Enteritidis isolates from patients with iNTS disease and two poultry isolates, collected between 2007 and 2015 in the Ashanti region of Ghana, were whole-genome sequenced. These isolates, notable for a high rate of diminished ciprofloxacin susceptibility (DCS), were placed in the phyletic context of 1,067 sequences from the Public Health England (PHE) S. Enteritidis genome database to understand whether DCS was associated with African or globally-circulating clades of S. Enteritidis. Analysis showed four of the major S. Enteritidis clades were represented, two global and two African. All thirteen DCS isolates, containing a single gyrA mutation at codon 87, belonged to a global PT4-like clade responsible for epidemics of poultry-associated enterocolitis. Apart from two DCS isolates, which clustered with PHE isolates associated with travel to Spain and Brazil, the remaining DCS isolates, including one poultry isolate, belonged to two monophyletic clusters in which gyrA 87 mutations appear to have developed within the region. CONCLUSIONS/SIGNIFICANCE: Extensive phylogenetic diversity is evident amongst iNTS disease-associated S. Enteritidis in Ghana. Antimicrobial resistance profiles differed by clade, highlighting the challenges of devising empirical sepsis guidelines. The detection of fluoroquinolone resistance in phyletically-related poultry and human isolates is of major concern and surveillance and control measures within the region's burgeoning poultry industry are required to protect a human population at high risk of iNTS disease.


Asunto(s)
Antibacterianos/farmacología , Enfermedades Transmisibles Emergentes/epidemiología , Fluoroquinolonas/farmacología , Salmonelosis Animal/epidemiología , Infecciones por Salmonella/epidemiología , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/aislamiento & purificación , Adolescente , Animales , Niño , Preescolar , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/veterinaria , Enterocolitis/epidemiología , Enterocolitis/microbiología , Enterocolitis/veterinaria , Femenino , Variación Genética , Genotipo , Ghana/epidemiología , Humanos , Lactante , Masculino , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Filogenia , Aves de Corral , Infecciones por Salmonella/microbiología , Salmonelosis Animal/microbiología , Salmonella enteritidis/clasificación , Salmonella enteritidis/genética , Secuenciación Completa del Genoma
17.
Lancet Infect Dis ; 19(7): 778-786, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31133519

RESUMEN

BACKGROUND: Salmonella spp are a major cause of food-borne outbreaks in Europe. We investigated a large multi-country outbreak of Salmonella enterica serotype Enteritidis in the EU and European Economic Area (EEA). METHODS: A confirmed case was defined as a laboratory-confirmed infection with the outbreak strains of S Enteritidis based on whole-genome sequencing (WGS), occurring between May 1, 2015, and Oct 31, 2018. A probable case was defined as laboratory-confirmed infection with S Enteritidis with the multiple-locus variable-number tandem repeat analysis outbreak profile. Multi-country epidemiological, trace-back, trace-forward, and environmental investigations were done. We did a case-control study including confirmed and probable cases and controls randomly sampled from the population registry (frequency matched by age, sex, and postal code). Odds ratios (ORs) for exposure rates between cases and controls were calculated with unmatched univariable and multivariable logistic regression. FINDINGS: 18 EU and EEA countries reported 838 confirmed and 371 probable cases. 509 (42%) cases were reported in 2016, after which the number of cases steadily increased. The case-control study results showed that cases more often ate in food establishments than did controls (OR 3·4 [95% CI 1·6-7·3]), but no specific food item was identified. Recipe-based food trace-back investigations among cases who ate in food establishments identified eggs from Poland as the vehicle of infection in October, 2016. Phylogenetic analysis identified two strains of S Enteritidis in human cases that were subsequently identified in salmonella-positive eggs and primary production premises in Poland, confirming the source of the outbreak. After control measures were implemented, the number of cases decreased, but increased again in March, 2017, and the increase continued into 2018. INTERPRETATION: This outbreak highlights the public health value of multi-country sharing of epidemiological, trace-back, and microbiological data. The re-emergence of cases suggests that outbreak strains have continued to enter the food chain, although changes in strain population dynamics and fewer cases indicate that control measures had some effect. Routine use of WGS in salmonella surveillance and outbreak response promises to identify and stop outbreaks in the future. FUNDING: European Centre for Disease Prevention and Control; Directorate General for Health and Food Safety, European Commission; and National Public Health and Food Safety Institutes of the authors' countries (see Acknowledgments for full list).

19.
J Med Microbiol ; 68(4): 538-548, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30888316

RESUMEN

PurposeandMethodology. Epidemiological and microbiological data on Yersinia enterocolitica (n=699) and Yersinia pseudotuberculosis (n=35) isolated from human clinical specimens in England between April 2004 and March 2018 were reviewed. Traditional biochemical species identification and serological typing results were compared with species identifications and serotypes derived from whole-genome sequencing (WGS) data for a sub-set of these isolates (n=179).Results. Most Y. enterocolitica isolates were from faecal specimens (74.4%) from adults (80.7%) and 50.7  % of isolates were from male patients. Most Y. pseudotuberculosis isolates were from blood cultures (68.6%) from adults (91%) and 60.0  % of isolates were from male patients. All sequenced isolates of Y. enterocolitica (n=158) and Y. pseudotuberculosis (n=21), as well as isolates belonging to other Yersinia species (n=21), were correctly identified from genomic data using a kmer-based identification approach. Traditional phenotypic serotyping typed 82/158 and 12/21 isolates of Y. enterocolitica and Y. pseudotuberculosis, respectively, while 118/158 and 21/21 isolates of Y. enterocolitica and Y. pseudotuberculosis, respectively, were typed by the genome-derived serotyping method. In addition, WGS data provided a multi-locus sequence type profile and virulence gene profile for all isolates.Conclusion. The use of WGS for typing Y. enterocolitica and Y. pseudotuberculosis at Public Health England will facilitate the monitoring of animal-to-human transmission of these important foodborne pathogens in the UK and improve public health surveillance of the pathogenic lineages.


Asunto(s)
Yersiniosis/epidemiología , Yersinia enterocolitica/clasificación , Infecciones por Yersinia pseudotuberculosis/epidemiología , Yersinia pseudotuberculosis/clasificación , Adulto , Técnicas de Tipificación Bacteriana , Inglaterra/epidemiología , Monitoreo Epidemiológico , Heces/microbiología , Femenino , Genoma Bacteriano , Humanos , Masculino , Salud Pública , Serotipificación , Virulencia , Secuenciación Completa del Genoma , Yersinia enterocolitica/aislamiento & purificación , Yersinia pseudotuberculosis/aislamiento & purificación
20.
Microb Genom ; 5(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30775964

RESUMEN

We present the LiSEQ (Listeria SEQuencing) project, funded by the European Food Safety Agency (EFSA) to compare Listeria monocytogenes isolates collected in the European Union from ready-to-eat foods, compartments along the food chain (e.g. food-producing animals, food-processing environments) and humans. In this article, we report the molecular characterization of a selection of this data set employing whole-genome sequencing analysis. We present an overview of the strain diversity observed in different sampled sources, and characterize the isolates based on their virulence and resistance profile. We integrate into our analysis the global L. monocytogenes genome collection described by Moura and colleagues in 2016 to assess the representativeness of the LiSEQ collection in the context of known L. monocytogenes strain diversity.


Asunto(s)
Productos Lácteos/microbiología , Productos Pesqueros/microbiología , Listeria monocytogenes/clasificación , Listeriosis/microbiología , Productos de la Carne/microbiología , Animales , Estudios Transversales , Farmacorresistencia Bacteriana/genética , Europa (Continente) , Manipulación de Alimentos , Microbiología de Alimentos , Variación Genética , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Virulencia/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA