Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Más filtros

Base de datos
Intervalo de año de publicación
Environ Sci Technol ; 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842427


Two years of satellite observations were used to quantify methane emissions from coal mines in Queensland, the largest coal-producing state in Australia. The six analyzed surface and underground coal mines are estimated to emit 570 ± 98 Gg a-1 in 2018-2019. Together, they account for 7% of the national coal production while emitting 55 ± 10% of the reported methane emission from coal mining in Australia. Our results indicate that for two of the three locations, our satellite-based estimates are significantly higher than reported to the Australian government. Most remarkably, 40% of the quantified emission came from a single surface mine (Hail Creek) located in a methane-rich coal basin. Our findings call for increased monitoring and investment in methane recovery technologies for both surface and underground mines.

Artículo en Inglés | MEDLINE | ID: mdl-31843920


Methane emissions due to accidents in the oil and natural gas sector are very challenging to monitor, and hence are seldom considered in emission inventories and reporting. One of the main reasons is the lack of measurements during such events. Here we report the detection of large methane emissions from a gas well blowout in Ohio during February to March 2018 in the total column methane measurements from the spaceborne Tropospheric Monitoring Instrument (TROPOMI). From these data, we derive a methane emission rate of 120 ± 32 metric tons per hour. This hourly emission rate is twice that of the widely reported Aliso Canyon event in California in 2015. Assuming the detected emission represents the average rate for the 20-d blowout period, we find the total methane emission from the well blowout is comparable to one-quarter of the entire state of Ohio's reported annual oil and natural gas methane emission, or, alternatively, a substantial fraction of the annual anthropogenic methane emissions from several European countries. Our work demonstrates the strength and effectiveness of routine satellite measurements in detecting and quantifying greenhouse gas emission from unpredictable events. In this specific case, the magnitude of a relatively unknown yet extremely large accidental leakage was revealed using measurements of TROPOMI in its routine global survey, providing quantitative assessment of associated methane emissions.

J Air Waste Manag Assoc ; 68(8): 763-800, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29364776


Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scales and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed, and new methods to improve the spatiotemporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions such as national totals on appropriate grids. The wide area of natural emissions is also summarized, and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example, by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. IMPLICATIONS: Emission data are probably the most important input for chemistry transport model (CTM) systems. They need to be provided in high spatial and temporal resolution and on a grid that is in agreement with the CTM grid. Simple methods to distribute the emissions in time and space need to be replaced by sophisticated emission models in order to improve the CTM results. New methods, e.g., for ammonia emissions, provide grid cell-dependent temporal profiles. In the future, large data fields from traffic observations or satellite observations could be used for more detailed emission data.

Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Modelos Teóricos , Contaminantes Atmosféricos/química , Humanos
J Hazard Mater ; 275: 31-6, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24837462


About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor exhausts, no actions are currently in place to reduce the non-exhaust part of emissions such as those from brake wear, road wear, tyre wear and road dust resuspension. These "non-exhaust" sources contribute easily as much and often more than the tailpipe exhaust to the ambient air PM concentrations in cities, and their relative contribution to ambient PM is destined to increase in the future, posing obvious research and policy challenges. This review highlights the major and more recent research findings in four complementary fields of research and seeks to identify the current gaps in research and policy with regard to non-exhaust emissions. The objective of this article is to encourage and direct future research towards an improved understanding on the relationship between emissions, concentrations, exposure and health impact and on the effectiveness of potential remediation measures in the urban environment.

Contaminantes Atmosféricos/análisis , Vehículos a Motor , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Ciudades , Polvo/análisis , Polvo/prevención & control , Monitoreo del Ambiente , Humanos , Modelos Teóricos
Sci Total Environ ; 408(20): 4591-9, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20627203


From research on PM(2.5) and PM(10) in 2007/2008 in the Netherlands, it was concluded that the coarse fraction (PM(2.5-10)) attributed 60% and 50% respectively, to the urban-regional and street-urban increments of PM(10). Contrary to Scandinavian and Mediterranean countries which exhibit significant seasonal variation in the coarse fraction of particulate matter (PM), in the Netherlands the coarse fraction in PM at a street location is rather constant during the year. Non-exhaust emissions by road traffic are identified as the main source for coarse PM in urban areas. Non-exhaust emissions mainly originate from re-suspension of accumulated deposited PM and road wear related particles, while primary tire and brake wear hardly contribute to the mass of non-exhaust emissions. However, tire and brake wear can clearly be identified in the total mass through the presence of the heavy metals: zinc, a tracer for tire wear and copper, a tracer for brake wear. The efficiency of road sweeping and washing to reduce non-exhaust emissions in a street-canyon in Amsterdam was investigated. The increments of the coarse fraction at a kerbside location and a housing façade location versus the urban background were measured at days with and without sweeping and washing. It was concluded that this measure did not significantly reduce non-exhaust emissions.

Contaminantes Atmosféricos/análisis , Restauración y Remediación Ambiental/métodos , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Eficiencia , Monitoreo del Ambiente , Vehículos a Motor , Países Bajos , Tamaño de la Partícula
Sci Total Environ ; 407(20): 5367-72, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19625074


Large-scale use of leaded gasoline was an important source of the neurotoxin lead in the European environment. After a sequence of regulations on the allowed gasoline lead content and, eventually, a ban on the use of lead additives in gasoline, road transport was no longer considered a source of atmospheric lead. Currently a discrepancy exists between measured atmospheric lead concentrations and model-predicted concentrations, suggesting that lead emissions to the atmosphere may be underestimated. Recently it was suggested that lead emission from unleaded gasoline combustion is still an important source and may (partly) fill the gap between modelled and observed atmospheric lead concentrations. In this paper we assess the plausibility of the latter suggestion by following various emission estimation methodologies. The uncertainty of lead emissions from road transport is further reduced by chemical analysis of fuel samples. The result of our assessment is that lead from road transport fuel combustion is not the missing lead source needed to fill the gap between modelled and observed lead concentrations. Road transport is still a source of lead through brake wear and a small contribution from exhaust emissions but this contributes no more than 5-8% of the EU25 total emission.

Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Gasolina/análisis , Plomo/análisis , Vehículos a Motor , Emisiones de Vehículos/análisis , Europa (Continente)