Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1149903, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007468

RESUMEN

Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, "Ferrovum myxofaciens," and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of "omics" techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.

2.
Front Microbiol ; 14: 1099445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065140

RESUMEN

Coastal waters such as those found in the Baltic Sea already suffer from anthropogenic related problems including increased algal blooming and hypoxia while ongoing and future climate change will likely worsen these effects. Microbial communities in sediments play a crucial role in the marine energy- and nutrient cycling, and how they are affected by climate change and shape the environment in the future is of great interest. The aims of this study were to investigate potential effects of prolonged warming on microbial community composition and nutrient cycling including sulfate reduction in surface (∼0.5 cm) to deeper sediments (∼ 24 cm). To investigate this, 16S rRNA gene amplicon sequencing was performed, and sulfate concentrations were measured and compared between sediments in a heated bay (which has been used as a cooling water outlet from a nearby nuclear power plant for approximately 50 years) and a nearby but unaffected control bay. The results showed variation in overall microbial diversity according to sediment depth and higher sulfate flux in the heated bay compared to the control bay. A difference in vertical community structure reflected increased relative abundances of sulfur oxidizing- and sulfate reducing bacteria along with a higher proportion of archaea, such as Bathyarchaeota, in the heated compared to the control bay. This was particularly evident closer to the sediment surface, indicating a compression of geochemical zones in the heated bay. These results corroborate findings in previous studies and additionally point to an amplified effect of prolonged warming deeper in the sediment, which could result in elevated concentrations of toxic compounds and greenhouse gases closer to the sediment surface.

3.
ISME J ; 17(6): 855-869, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977742

RESUMEN

Besides long-term average temperature increases, climate change is projected to result in a higher frequency of marine heatwaves. Coastal zones are some of the most productive and vulnerable ecosystems, with many stretches already under anthropogenic pressure. Microorganisms in coastal areas are central to marine energy and nutrient cycling and therefore, it is important to understand how climate change will alter these ecosystems. Using a long-term heated bay (warmed for 50 years) in comparison with an unaffected adjacent control bay and an experimental short-term thermal (9 days at 6-35 °C) incubation experiment, this study provides new insights into how coastal benthic water and surface sediment bacterial communities respond to temperature change. Benthic bacterial communities in the two bays reacted differently to temperature increases with productivity in the heated bay having a broader thermal tolerance compared with that in the control bay. Furthermore, the transcriptional analysis showed that the heated bay benthic bacteria had higher transcript numbers related to energy metabolism and stress compared to the control bay, while short-term elevated temperatures in the control bay incubation experiment induced a transcript response resembling that observed in the heated bay field conditions. In contrast, a reciprocal response was not observed for the heated bay community RNA transcripts exposed to lower temperatures indicating a potential tipping point in community response may have been reached. In summary, long-term warming modulates the performance, productivity, and resilience of bacterial communities in response to warming.


Asunto(s)
Cambio Climático , Ecosistema , Temperatura , Calor , Bacterias/genética
4.
Sci Total Environ ; 869: 161845, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709904

RESUMEN

Acid sulfate soils are sulfide-rich soils that pose a notable environmental risk as their strong acidity and low pH mobilizes metals from soil minerals leading to both acidification and metal contamination of the surrounding environment. In this study a rapid and cost-efficient approach was developed to resolve the main distribution patterns and geochemical features of acid sulfate soils throughout coastal plains stretching for some 2000 km in eastern, southern, and western Sweden. Of the investigated 126 field sites, 47 % had acid sulfate soils including 33 % active, 12 % potential, and 2 % pseudo acid sulfate soils. There were large regional variations in the extent of acid sulfate soils, with overall much higher proportions of these soils along the eastern coastal plains facing the Baltic Sea than the western coastal plains facing the Kattegatt/Skagerrak (Atlantic Ocean). The sulfur concentrations of the soil's parent material, consisting of reduced near-pH neutral sediments, were correlated inversely both with the minimum pH of the soils in situ (rS = -0.65) and the pH after incubation (oxidation) of the reduced sediments (rS = -0.77). This indicated the importance of sulfide levels in terms of both present and potential future acidification. Hence, the higher proportion of acid sulfate soils in the east was largely the result of higher sulfur concentrations in this part of the country. The study showed that the approach was successful in identifying large-scale spatial patterns and geochemical characteristics of importance for environmental assessments related to these environmentally unfriendly soils.

5.
Nat Commun ; 13(1): 4837, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977924

RESUMEN

The deep terrestrial biosphere encompasses the life below the photosynthesis-fueled surface that perseveres in typically nutrient and energy depleted anoxic groundwaters. The composition and cycling of this vast dissolved organic matter (DOM) reservoir relevant to the global carbon cycle remains to be deciphered. Here we show that recent Baltic Sea-influenced to ancient pre-Holocene saline Fennoscandian Shield deep bedrock fracture waters carried DOM with a strong terrigenous signature and varying contributions from abiotic and biotic processes. Removal of easily degraded carbon at the surface-to-groundwater transition and corresponding microbial community assembly processes likely resulted in the highly similar DOM signatures across the notably different water types that selected for a core microbiome. In combination with the aliphatic character, depleted δ13C signatures in DOM indicated recent microbial production in the oldest, saline groundwater. Our study revealed the persistence of terrestrially-sourced carbon in severely energy limited deep continental groundwaters supporting deep microbial life.


Asunto(s)
Agua Subterránea , Microbiota , Carbono/metabolismo , Ciclo del Carbono , Materia Orgánica Disuelta
6.
Front Microbiol ; 13: 873281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755995

RESUMEN

Coastal marine ecosystems are some of the most diverse natural habitats while being highly vulnerable in the face of climate change. The combination of anthropogenic influence from land and ongoing climate change will likely have severe effects on the environment, but the precise response remains uncertain. This study compared an unaffected "control" Baltic Sea bay to a "heated" bay that has undergone artificial warming from cooling water release from a nuclear power plant for ~50 years. This heated the water in a similar degree to IPCC SSP5-8.5 predictions by 2100 as natural systems to study temperature-related climate change effects. Bottom water and surface sediment bacterial communities and their biogeochemical processes were investigated to test how future coastal water warming alters microbial communities; shifts seasonal patterns, such as increased algae blooming; and influences nutrient and energy cycling, including elevated respiration rates. 16S rRNA gene amplicon sequencing and geochemical parameters demonstrated that heated bay bottom water bacterial communities were influenced by increased average temperatures across changing seasons, resulting in an overall Shannon's H diversity loss and shifts in relative abundances. In contrast, Shannon's diversity increased in the heated surface sediments. The results also suggested a trend toward smaller-sized microorganisms within the heated bay bottom waters, with a 30% increased relative abundance of small size picocyanobacteria in the summer (June). Furthermore, bacterial communities in the heated bay surface sediment displayed little seasonal variability but did show potential changes of long-term increased average temperature in the interplay with related effects on bottom waters. Finally, heated bay metabolic gene predictions from the 16S rRNA gene sequences suggested raised anaerobic processes closer to the sediment-water interface. In conclusion, climate change will likely alter microbial seasonality and diversity, leading to prolonged and increased algae blooming and elevated respiration rates within coastal waters.

7.
Commun Biol ; 5(1): 37, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017653

RESUMEN

The deep biosphere is an energy constrained ecosystem yet fosters diverse microbial communities that are key in biogeochemical cycling. Whether microbial communities in deep biosphere groundwaters are shaped by infiltration of allochthonous surface microorganisms or the evolution of autochthonous species remains unresolved. In this study, 16S rRNA gene amplicon analyses showed that few groups of surface microbes infiltrated deep biosphere groundwaters at the Äspö Hard Rock Laboratory, Sweden, but that such populations constituted up to 49% of the microbial abundance. The dominant persisting phyla included Patescibacteria, Proteobacteria, and Epsilonbacteraeota. Despite the hydrological connection of the Baltic Sea with the studied groundwaters, infiltrating microbes predominantly originated from deep soil groundwater. Most deep biosphere groundwater populations lacked surface representatives, suggesting that they have evolved from ancient autochthonous populations. We propose that deep biosphere groundwater communities in the Fennoscandian Shield consist of selected infiltrated and indigenous populations adapted to the prevailing conditions.


Asunto(s)
Bacterias , Agua Subterránea/microbiología , Microbiota , Proteobacteria , Bacterias/citología , Bacterias/genética , Bacterias/aislamiento & purificación , Ecosistema , Agua Dulce/microbiología , Microbiota/genética , Microbiota/fisiología , Proteobacteria/citología , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Suecia
8.
Sci Total Environ ; 813: 151864, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34822903

RESUMEN

Sediments along the Baltic Sea coast can contain considerable amounts of metal sulfides that if dredged and the spoils deposited such that they are exposed to air, can release high concentrations of acid and toxic metals into recipient water bodies. Two river estuaries in western Finland were dredged from 2013 to 2018 and the dredge spoils were deposited on land previously covered with agricultural limestone to buffer the pH and mitigate acid and metal release. In this study, the geochemistry and 16S rRNA gene amplicon based bacterial communities were investigated over time to explore whether the application of lime prevented a conversion of the dredge spoils into acid producing and metal releasing soil. The pH of the dredge spoils decreased with time indicating metal sulfide oxidation and resulted in elevated sulfate concentrations along with a concomitant release of metals. However, calculations indicated only approximately 5% of the added lime had been dissolved. The bacterial communities decreased in diversity with the lowering of the pH as taxa most similar to extremely acidophilic sulfur, and in some cases iron, oxidizing Acidithiobacillus species became the dominant characterized genus in the deposited dredge spoils as the oxidation front moved deeper. In addition, other taxa characterized as involved in oxidation of iron or sulfur were identified including Gallionella, Sulfuricurvum, and Sulfurimonas. These data suggest there was a rapid conversion of the dredge spoils to severely acidic soil similar to actual acid sulfate soil and that the lime placed on the land prior to deposition of the spoils, and later ploughed into the dry dredge spoils, was insufficient to halt this process. Hence, future dredging and deposition of dredge spoils containing metal sulfides should not only take into account the amount of lime used for buffering but also its grain size and mixing into the soil.


Asunto(s)
Ríos , Suelo , Sedimentos Geológicos , ARN Ribosómico 16S , Sulfatos/análisis , Sulfuros/análisis
9.
Chemosphere ; 286(Pt 2): 131817, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426130

RESUMEN

Removal of vanadium from liquid waste streams protects the environment from toxic vanadium species and promotes the recovery of the valuable metal. In this study, real mining ditch water was sampled from a closed vanadium mine (V-Fe-Ti oxide deposit, Finland) and used in sorption experiments at prevailing vanadium concentration (4.66-6.85 mg/L) and pH conditions (7.02-7.83). The high concentration of vanadium in the water represents a potential health concern according to the initial risk assessment carried out in this study. Vanadium was efficiently removed using four different iron sorbents: ferric oxyhydroxide with some goethite (CFH-12), poorly crystallized akaganéite (GEH 101), ferric groundwater treatment residual (GWTR), and GWTR-modified peat (GWTR-Peat). Higher dosage (6 g/L with 24 h contact time) and longer contact time (72 h using 1 g/L dosage) resulted in removal efficiencies of higher than 85%. Kinetic data were well represented by the Elovich model while intra-particle diffusion and Boyd models suggested that the sorption process in a real water matrix was significantly controlled by both film diffusion and intra-particle diffusion. Column studies with CFH-12, GEH 101, and GWTR-Peat showed that the breakthrough started earlier with the mining ditch water compared to a synthetic vanadium solution (investigated only with CFH-12), whereas GEH 101 proved to have the best performance in column mode. The Thomas and Yoon-Nelson column models were found to agree with the experimental data fairly well with the 50% breakthrough time being close to the experimental value for all the studied sorbents.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Hierro , Vanadio , Agua , Contaminantes Químicos del Agua/análisis
10.
Sci Rep ; 11(1): 23384, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862412

RESUMEN

Coastal aquatic systems suffer from nutrient enrichment, which results in accelerated eutrophication effects due to increased microbial metabolic rates. Climate change related prolonged warming will likely accelerate existing eutrophication effects, including low oxygen concentrations. However, how the interplay between these environmental changes will alter coastal ecosystems is poorly understood. In this study, we compared 16S rRNA gene amplicon based bacterial communities in coastal sediments of a Baltic Sea basin in November 2013 and 2017 at three sites along a water depth gradient with varying bottom water oxygen histories. The shallow site showed changes of only 1.1% in relative abundance of bacterial populations in 2017 compared to 2013, while the deep oxygen-deficient site showed up to 11% changes in relative abundance including an increase of sulfate-reducing bacteria along with a 36% increase in organic matter content. The data suggested that bacterial communities in shallow sediments were more resilient to seasonal oxygen decline, while bacterial communities in sediments subjected to long-term hypoxia seemed to be sensitive to oxygen changes and were likely to be under hypoxic/anoxic conditions in the future. Our data demonstrate that future climate changes will likely fuel eutrophication related spread of low oxygen zones.


Asunto(s)
Bacterias/clasificación , Eutrofización , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Países Bálticos , Cambio Climático , ADN Bacteriano/genética , ADN Ribosómico/genética , Calentamiento Global , Oxígeno/metabolismo , Filogenia , Agua/metabolismo
11.
Sci Rep ; 11(1): 16275, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381075

RESUMEN

Bioleaching of metal sulfide ores involves acidophilic microbes that catalyze the chemical dissolution of the metal sulfide bond that is enhanced by attached and planktonic cell mediated oxidation of iron(II)-ions and inorganic sulfur compounds. Leptospirillum spp. often predominate in sulfide mineral-containing environments, including bioheaps for copper recovery from chalcopyrite, as they are effective primary mineral colonizers and oxidize iron(II)-ions efficiently. In this study, we demonstrated a functional diffusible signal factor interspecies quorum sensing signaling mechanism in Leptospirillum ferriphilum and Leptospirillum ferrooxidans that produces (Z)-11-methyl-2-dodecenoic acid when grown with pyrite as energy source. In addition, pure diffusible signal factor and extracts from supernatants of pyrite grown Leptospirillum spp. inhibited biological iron oxidation in various species, and that pyrite grown Leptospirillum cells were less affected than iron grown cells to self inhibition. Finally, transcriptional analyses for the inhibition of iron-grown L. ferriphilum cells due to diffusible signal factor was compared with the response to exposure of cells to N- acyl-homoserine-lactone type quorum sensing signal compounds. The data suggested that Leptospirillum spp. diffusible signal factor production is a strategy for niche protection and defense against other microbes and it is proposed that this may be exploited to inhibit unwanted acidophile species.

12.
Nat Commun ; 12(1): 4253, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253732

RESUMEN

While oligotrophic deep groundwaters host active microbes attuned to the low-end of the bioenergetics spectrum, the ecological constraints on microbial niches in these ecosystems and their consequences for microbiome convergence are unknown. Here, we provide a genome-resolved, integrated omics analysis comparing archaeal and bacterial communities in disconnected fracture fluids of the Fennoscandian Shield in Europe. Leveraging a dataset that combines metagenomes, single cell genomes, and metatranscriptomes, we show that groundwaters flowing in similar lithologies offer fixed niches that are occupied by a common core microbiome. Functional expression analysis highlights that these deep groundwater ecosystems foster diverse, yet cooperative communities adapted to this setting. We suggest that these communities stimulate cooperation by expression of functions related to ecological traits, such as aggregate or biofilm formation, while alleviating the burden on microorganisms producing compounds or functions that provide a collective benefit by facilitating reciprocal promiscuous metabolic partnerships with other members of the community. We hypothesize that an episodic lifestyle enabled by reversible bacteriostatic functions ensures the subsistence of the oligotrophic deep groundwater microbiome.


Asunto(s)
Metabolismo Energético , Agua Subterránea/microbiología , Microbiota , Biodiversidad , Bases de Datos Genéticas , Regulación de la Expresión Génica , Punto Isoeléctrico , Metagenoma , Microbiota/genética , Filogenia , Transcripción Genética , Transcriptoma/genética
13.
Front Microbiol ; 12: 693615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276626

RESUMEN

Vanadium - a transition metal - is found in the ferrous-ferric mineral, magnetite. Vanadium has many industrial applications, such as in the production of high-strength low-alloy steels, and its increasing global industrial consumption requires new primary sources. Bioleaching is a biotechnological process for microbially catalyzed dissolution of minerals and wastes for metal recovery such as biogenic organic acid dissolution of bauxite residues. In this study, 16S rRNA gene amplicon sequencing was used to identify microorganisms in Nordic mining environments influenced by vanadium containing sources. These data identified gene sequences that aligned to the Gluconobacter genus that produce gluconic acid. Several strategies for magnetite dissolution were tested including oxidative and reductive bioleaching by acidophilic microbes along with dissimilatory reduction by Shewanella spp. that did not yield significant metal release. In addition, abiotic dissolution of the magnetite was tested with gluconic and oxalic acids, and yielded 3.99 and 81.31% iron release as a proxy for vanadium release, respectively. As a proof of principle, leaching via gluconic acid production by Gluconobacter oxydans resulted in a maximum yield of 9.8% of the available iron and 3.3% of the vanadium. Addition of an increased concentration of glucose as electron donor for gluconic acid production alone, or in combination with calcium carbonate to buffer the pH, increased the rate of iron dissolution and final vanadium recoveries. These data suggest a strategy of biogenic organic acid mediated vanadium recovery from magnetite and point the way to testing additional microbial species to optimize the recovery.

14.
Commun Biol ; 4(1): 307, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686191

RESUMEN

The deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in 'metabolic standby'. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of 'kill-the-winner' oscillations creating slow motion 'boom and burst' cycles.


Asunto(s)
Agua Subterránea/virología , Viroma , Replicación Viral , Virus/crecimiento & desarrollo , Firmicutes/crecimiento & desarrollo , Firmicutes/virología , Agua Subterránea/microbiología , Interacciones Huésped-Patógeno , Metagenómica , Densidad de Población , Factores de Tiempo , Virus/genética , Virus/metabolismo , Microbiología del Agua
15.
Extremophiles ; 25(2): 143-158, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33616780

RESUMEN

Biooxidation of gold-bearing refractory mineral ores such as arsenopyrite (FeAsS) in stirred tanks produces solutions containing highly toxic arsenic concentrations. In this study, ferrous iron and inorganic sulfur-oxidizing Acidithiobacillus strain IBUN Ppt12 most similar to Acidithiobacillus ferrianus and inorganic sulfur compound oxidizing Acidithiobacillus sp. IBUNS3 were grown in co-culture during biooxidation of refractory FeAsS. Total RNA was extracted and sequenced from the planktonic cells to reveal genes with different transcript counts involved in the response to FeAsS containing medium. The co-culture's response to arsenic release during biooxidation included the ars operon genes that were independently regulated according to the arsenopyrite concentration. Additionally, increased mRNA transcript counts were identified for transmembrane ion transport proteins, stress response mechanisms, accumulation of inorganic polyphosphates, urea catabolic processes, and tryptophan biosynthesis. Acidithiobacillus spp. RNA transcripts also included those encoding the Rus and PetI proteins involved in ferrous iron oxidation and gene clusters annotated as encoding inorganic sulfur compound metabolism enzymes. Finally, mRNA counts of genes related to DNA methylation, management of oxidative stress, chemotaxis, and motility during biooxidation were decreased compared to cells growing without mineral. The results provide insights into the adaptation of Acidithiobacillus spp. to growth during biooxidation of arsenic-bearing sulfides.


Asunto(s)
Acidithiobacillus , Acidithiobacillus/genética , Arsenicales , Compuestos de Hierro , Minerales , Oxidación-Reducción , ARN , Sulfuros
16.
Front Microbiol ; 12: 822229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35242113

RESUMEN

Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.

17.
J Hazard Mater ; 408: 124600, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33339698

RESUMEN

Compacted bentonites are one of the best sealing and backfilling clays considered for use in Deep Geological Repositories of radioactive wastes. However, an in-depth understanding of their behavior after placement in the repository is required, including if the activity of indigenous microorganisms affects safety conditions. Here we provide an optimized phenol:chloroform based protocol that facilitates higher DNA-yields when other methods failed. To demonstrate the efficiency of this method, DNA was extracted from acetate-treated bentonites compacted at 1.5 and 1.7 g/cm3 densities after 24 months anoxic incubation. Among the 16S rRNA gene sequences identified, those most similar to taxa mediating biogeochemical sulfur cycling included sulfur oxidizing (e.g., Thiobacillus, and Sulfurimonas) and sulfate reducing (e.g., Desulfuromonas and Desulfosporosinus) bacteria. In addition, iron-cycling populations included iron oxidizing (e.g., Thiobacillus and Rhodobacter) plus reducing taxa (e.g., Geobacillus). Genera described for their capacity to utilize acetate as a carbon source were also detected such as Delftia and Stenotrophomonas. Lastly, microscopic analyses revealed pores and cracks that could host nanobacteria or spores. This study highlights the potential role of microbial driven biogeochemical processes in compacted bentonites and the effect of high compaction on microbial diversity in Deep Geological Repositories.


Asunto(s)
Residuos Radiactivos , Bacterias/genética , Bentonita , Arcilla , ARN Ribosómico 16S/genética , Residuos Radiactivos/análisis
18.
Microorganisms ; 8(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971967

RESUMEN

Biodesulfurization processes remove toxic and corrosive hydrogen sulfide from gas streams (e.g., natural gas, biogas, or syngas). To improve the efficiency of these processes under haloalkaline conditions, a sulfate and thiosulfate reduction step can be included. The use of H2/CO mixtures (as in syngas) instead of pure H2 was tested to investigate the potential cost reduction of the electron donor required. Syngas is produced in the gas-reforming process and consists mainly of H2, carbon monoxide (CO), and carbon dioxide (CO2). Purification of syngas to obtain pure H2 implies higher costs because of additional post-treatment. Therefore, the use of syngas has merit in the biodesulfurization process. Initially, CO inhibited hydrogen-dependent sulfate reduction. However, after 30 days the biomass was adapted and both H2 and CO were used as electron donors. First, formate was produced, followed by sulfate and thiosulfate reduction, and later in the reactor run acetate and methane were detected. Sulfide production rates with sulfate and thiosulfate after adaptation were comparable with previously described rates with only hydrogen. The addition of CO marginally affected the microbial community in which Tindallia sp. was dominant. Over time, acetate production increased and acetogenesis became the dominant process in the bioreactor. Around 50% of H2/CO was converted to acetate. Acetate supported biomass growth and higher biomass concentrations were reached compared to bioreactors without CO feed. Finally, CO addition resulted in the formation of small, compact microbial aggregates. This suggests that CO or syngas can be used to stimulate aggregation in haloalkaline biodesulfurization systems.

19.
Sci Total Environ ; 745: 141017, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32736107

RESUMEN

Biological sulfate and thiosulfate reduction under haloalkaline conditions can be applied to treat waste streams from biodesulfurization systems. However, the lack of microbial aggregation under haloalkaline conditions limits the volumetric rates of sulfate and thiosulfate reducing bioreactors. As biomass retention in haloalkaline bioreactors has not been studied before, sand was chosen as a biomass carrier material to increase cell retention and consequently raise the volumetric rates. The results showed that ~10 fold higher biomass concentrations could be achieved with sand, compared to previous studies without carrier addition. The volumetric rates of sulfate/thiosulfate reduction increased approximately 4.5 times. Biomass attachment to the sand was restricted to cavities within the sand particles. Acetate produced by acetogenic bacteria from H2 and CO2 was used as carbon source for biomass growth, while formate that was also produced from H2 and CO2 enhanced sulfate reduction. The microbial community composition was analyzed by 16S rRNA gene amplicon sequencing, and Tindallia related bacteria were probably responsible for formate formation from hydrogen. The community attached to the sand particles was similar to the suspended fraction, but the relative abundance of sequences most closely related to Desulfohalobiaceae was much higher in the attached fraction compared to the suspended fraction (30% and 13%, respectively). The results indicated that even though the biomass attachment to sand was poor, it still increased the biomass concentration and consequently the sulfate and thiosulfate reduction volumetric rates.


Asunto(s)
Arena , Tiosulfatos , Biomasa , Reactores Biológicos , Oxidación-Reducción , ARN Ribosómico 16S , Sulfatos
20.
Sci Data ; 7(1): 215, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636389

RESUMEN

Society's demand for metals is ever increasing while stocks of high-grade minerals are being depleted. Biomining, for example of chalcopyrite for copper recovery, is a more sustainable biotechnological process that exploits the capacity of acidophilic microbes to catalyze solid metal sulfide dissolution to soluble metal sulfates. A key early stage in biomining is cell attachment and biofilm formation on the mineral surface that results in elevated mineral oxidation rates. Industrial biomining of chalcopyrite is typically carried out in large scale heaps that suffer from the downsides of slow and poor metal recoveries. In an effort to mitigate these drawbacks, this study investigated planktonic and biofilm cells of acidophilic (optimal growth pH < 3) biomining bacteria. RNA and proteins were extracted, and high throughput "omics" performed from a total of 80 biomining experiments. In addition, micrographs of biofilm formation on the chalcopyrite mineral surface over time were generated from eight separate experiments. The dataset generated in this project will be of great use to microbiologists, biotechnologists, and industrial researchers.


Asunto(s)
Bacterias/genética , Biopelículas/crecimiento & desarrollo , Metales/aislamiento & purificación , Biología de Sistemas , Ácidos/química , Proteínas Bacterianas/genética , Cobre/aislamiento & purificación , ARN Bacteriano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...