Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Más filtros

Base de datos
Intervalo de año de publicación
Artículo en Inglés | MEDLINE | ID: mdl-33416934


The hepatoprotective activity of heliomycin obtained from the culture broth of actinomycete AB5 against diethylnitrosamine (DEN)-induced hepatic cancer in Wistar rats was estimated. Heliomycin exhibited a significant decrease in the levels of alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) compared to the positive control. For instance, the heliomycin group after 20 weeks showed a significant decline in ALT, AST, and ALP values (70.75 ± 5.12, 140.25 ± 11.75, and 163.25 ± 18.66, respectively) compared to the positive control group (170.00 ± 9.55, 252.75 ± 12.33, and 278.00 ± 21.32, respectively). Additionally, the isolated compound showed a highly significant decrease in serum alpha-fetoprotein (AFP) levels. After 8, 16, and 20 weeks, the mean values of AFP in the heliomycin group revealed a highly significant decrease (33.62 ± 2.46, 30.00 ± 4.05, and 28.50 ± 2.64, respectively) compared to the positive control group (49.45 ± 3.03, 81.90 ± 6.70, and 90.75 ± 5.12, respectively). The histopathological investigation of liver sections supported the results of biochemical analysis. It was demonstrated that heliomycin showed histological improvement of hepatocytes and marked increase of nuclear pyknotic with clear cytoplasm, which is a sign of improving the apoptotic pathway of malignant cells. It also displayed marked fibrosis at most of the malignant cells and the development of some regenerative nodules. Heliomycin showed moderate immunoreactivity with alpha-fetoprotein (AFP), and proliferation cell nuclear antigen (PCNA) compared to the positive control group. To the best of our knowledge, this is the first study to report the anticancer activity of heliomycin against hepatocellular carcinoma in vivo.

Neurotox Res ; 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141427


Cadmium (Cd) is a heavy metal of considerable toxicity, inducing a number of hazardous effects to humans and animals including neurotoxicity. This experiment was aimed to investigate the potential effect of kaempferol (KPF) against Cd-induced cortical injury. Thirty-two adult Sprague-Dawley rats were divided equally into four groups. The control rats intraperitoneally (i.p.) injected with physiological saline (0.9% NaCl), the cadmium chloride (CdCl2)-treated rats were i.p. injected with 4.5 mg/kg of CdCl2, the KPF-treated rats were orally gavaged with 50 mg/kg of KPF, and the KPF + CdCl2-treated rats were administered orally 50 mg/kg of KPF 120 min before receiving i.p. injection of 4.5 mg/kg CdCl2. CdCl2 exposure for 30 days led to the accumulation of Cd in the cortical tissue, accompanied by a reduction in the content of monoamines and acetylcholinesterase activity. Additionally, CdCl2 induced a state of oxidative stress as evidenced by the elevation of lipid peroxidation and nitrate/nitrite levels, while glutathione content and the activities of glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase were decreased. Moreover, CdCl2 mediated inflammatory events in the cortical tissue through increasing tumor necrosis factor-alpha and interleukin-1 beta levels and upregulating the expression of inducible nitric oxide synthase. Furthermore, pro-apoptotic proteins (Bax and caspase-3) were elevated, while Bcl-2, the anti-apoptotic protein, was decreased. Also, histological alterations were observed obviously following CdCl2. However, KPF pretreatment restored significantly the examined markers to be near the normal values. Hence, the obtained data provide evidences that KPF pretreatment has the protective effect to preserve the cortical tissues in CdCl2-exposed rats by restraining oxidative stress, inflammatory response, apoptosis, neurochemical modulation, and improving the histological changes.

Metab Brain Dis ; 34(1): 235-244, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30446882


Due to its ability to cross blood brain barrier and placenta, dibutyl phthalate (di-n-butyl phthalate, DBP) is expected to cause severe side effects to the central nervous system of animals and humans. A little data is available about the potential DBP neurotoxicity; therefore, this work was designed to investigate the brain tissue injury induced by DBP exposure. Forty Wister albino rats were allocated randomly into 4 groups (10 rats each). Group 1 served as control and the rats administered with physiological saline (0.9% NaCl) orally for 12 weeks. Groups 2, 3 and 4 were orally treated with DPB (100, 250 and 500 mg/kg) respectively for 12 weeks. DBP-intoxicated rats showed a disturbance in the oxidative status in cerebral cortex, striatum and brainstem, as represented by the elevated oxidants [malondialdehyde (MDA), nitric oxide (NO), 8-hydroxy-2-deoxyguanosine (8-OHdG)] and the decreased antioxidant molecules [reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)]. DBP also enhanced a pro-inflammatory state through increasing the release of tumor necrosis factor- α (TNF-α) and interleukin-1ß (IL-1ß). The increase of these cytokines was associated with the increase of pro-apoptotic proteins [Bcl-2 associated X protein (Bax) and caspase-3] and the decrease of the anti-apoptotic protein, B cell lymphoma 2 (Bcl-2). In addition, the levels of norepinephrine (NE), dopamine (DA) and acetylcholine esterase (AChE) activity were decreased. This was accompanied by the alterations in the major excitatory and inhibitory amino acids neurotransmitters levels. The present findings indicated that DBP could exert its neuronal damage through oxidative stress, DNA oxidation, neuroinflammation, activation of apoptotic proteins and altering the monoaminergic, cholinergic and amino acids transmission.

Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Dibutil Ftalato/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Encéfalo/metabolismo , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Malondialdehído/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Transmisión Sináptica/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30291211


Cadmium (Cd) is a common environmental toxicant that has harmful effects on plants, animals, and humans. The present study evaluated the protective effects of Fragaria ananassa methanolic extract (SME) on cadmium chloride (CdCl2)-induced neuronal toxicity in rats. Male albino rats were intraperitoneally (i.p) injected with CdCl2 (6.5 mg/kg) for 5 days with or without the SME (250 mg/kg). We measured the levels of Cd, lipid peroxidation (LPO), nitric oxide, glutathione (GSH), and oxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, and glutathione reductase (GR) in the whole brain homogenate. Compared with the control group, the Cd-intoxicated group showed a marked increase in the brain levels of Cd, LPO, and nitric oxide and a decrease in the levels of GSH and all tested antioxidant enzymes. Compared with Cd-intoxicated rats, the rats pretreated with SME showed restoration of oxidative balance in the brain tissue. While the expression of brain SOD2, CAT, glutathione peroxidase 1, and GR was down-regulated in the Cd-treated group, the expression of these enzymes was up-regulated in rats pretreated with SME. In addition, administration of SME before CdCl2 increased the Bcl-2 expression, but significantly decreased the expression of Bax. Immunohistochemical analysis showed that compared with Cd-intoxicated rats, rats pretreated with SME showed a decrease in the protein expression of tumor necrosis factor α (TNF-α). Our findings indicate that SME protects the brain tissue from Cd-induced neuronal toxicity by improving the antioxidant system and increasing antiapoptotic and anti-inflammatory activities.

Cloruro de Cadmio/toxicidad , Fragaria/química , Neuronas/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Antioxidantes/química , Apoptosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Neuronas/patología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química , Ratas , Factor de Necrosis Tumoral alfa/genética
Neuropsychiatr Dis Treat ; 14: 631-640, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503547


Introduction: Although the frequency of pediatric-onset multiple sclerosis (POMS) has increased in recent decades, it is still highly uncommon, which creates a need for the involvement of more registries from various clinical centers. Objective: To characterize the demographic, clinical, and paraclinical features of Egyptian patients with POMS. Patients and methods: A retrospective chart review study was undertaken on 237 Egyptian patients with demyelinating events which started before the age of 18 years who attended one of five tertiary referral centers in Cairo, Egypt. Results: Multiple sclerosis was diagnosed in 186 patients, 47 (25.27%) patients had disease onset before the age of 12 years; "early-onset pediatric multiple sclerosis (EOPMS)". The mean age of disease onset was (14.13±2.49 years), with a female:male ratio of 1.62:1, none of the enrolled patients had a primary progressive course (PPMS), whereas 10 patients (5.38%) had a secondary progressive form. Approximately two-thirds of the patients had monofocal disease onset, and less than 10% presented with encephalopathy; most of them had EOPMS. Motor weakness was the presenting symptom in half of the patients, whereas cerebellar presentation was detected in 34.95%, mainly in EOPMS. Seizures (not related to encephalopathy) were more frequent in those with EOPMS. Initial brain magnetic resonance images were positive in all patients, with detected atypical lesions in 29.03%, enhanced lesions in 35.48%, black holes in 13.98%, and infratentorial in 34.41%. Cervical cord involvement was found in 68.28%. More than two-thirds of the patients received either immunomodulatory or immunosuppressant (IS) treatment throughout their disease course, and about half of them received their treatment within the first year from symptoms onset, with a more favorable outcome, and patients with highly active disease received natalizumab, fingolimod, or other IS. Conclusion: The results from this registry - the largest for MS in the Arab region to date - are comparable to other registries. Immunomodulatory therapies in POMS are well tolerated and efficacious and they can improve the long-term outcome in children.