Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Intervalo de año de publicación
2.
Nat Commun ; 12(1): 3733, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145226

RESUMEN

Graphene integrated photonics provides several advantages over conventional Si photonics. Single layer graphene (SLG) enables fast, broadband, and energy-efficient electro-optic modulators, optical switches and photodetectors (GPDs), and is compatible with any optical waveguide. The last major barrier to SLG-based optical receivers lies in the current GPDs' low responsivity when compared to conventional PDs. Here we overcome this by integrating a photo-thermoelectric GPD with a Si microring resonator. Under critical coupling, we achieve >90% light absorption in a ~6 µm SLG channel along a Si waveguide. Cavity-enhanced light-matter interactions cause carriers in SLG to reach ~400 K for an input power ~0.6 mW, resulting in a voltage responsivity ~90 V/W, with a receiver sensitivity enabling our GPDs to operate at a 10-9 bit-error rate, on par with mature semiconductor technology, but with a natural generation of a voltage, rather than a current, thus removing the need for transimpedance amplification, with a reduction of energy-per-bit, cost, and foot-print.

4.
Nat Commun ; 12(1): 2728, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980859

RESUMEN

Graphene is ideally suited for optoelectronics. It offers absorption at telecom wavelengths, high-frequency operation and CMOS-compatibility. We show how high speed optoelectronic mixing can be achieved with high frequency (~20 GHz bandwidth) graphene field effect transistors (GFETs). These devices mix an electrical signal injected into the GFET gate and a modulated optical signal onto a single layer graphene (SLG) channel. The photodetection mechanism and the resulting photocurrent sign depend on the SLG Fermi level (EF). At low EF (<130 meV), a positive photocurrent is generated, while at large EF (>130 meV), a negative photobolometric current appears. This allows our devices to operate up to at least 67 GHz. Our results pave the way for GFETs optoelectronic mixers for mm-wave applications, such as telecommunications and radio/light detection and ranging (RADAR/LIDARs.).

5.
Nat Commun ; 12(1): 2854, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001870

RESUMEN

Hard disk drives (HDDs) are used as secondary storage in digital electronic devices owing to low cost and large data storage capacity. Due to the exponentially increasing amount of data, there is a need to increase areal storage densities beyond ~1 Tb/in2. This requires the thickness of carbon overcoats (COCs) to be <2 nm. However, friction, wear, corrosion, and thermal stability are critical concerns below 2 nm, limiting current technology, and restricting COC integration with heat assisted magnetic recording technology (HAMR). Here we show that graphene-based overcoats can overcome all these limitations, and achieve two-fold reduction in friction and provide better corrosion and wear resistance than state-of-the-art COCs, while withstanding HAMR conditions. Thus, we expect that graphene overcoats may enable the development of 4-10 Tb/in2 areal density HDDs when employing suitable recording technologies, such as HAMR and HAMR+bit patterned media.

6.
Nat Nanotechnol ; 14(10): 907-910, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31582830
7.
Nat Commun ; 10(1): 3658, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31413256

RESUMEN

Spontaneous Raman spectroscopy is a powerful characterization tool for graphene research. Its extension to the coherent regime, despite the large nonlinear third-order susceptibility of graphene, has so far proven challenging. Due to its gapless nature, several interfering electronic and phononic transitions concur to generate its optical response, preventing to retrieve spectral profiles analogous to those of spontaneous Raman. Here we report stimulated Raman spectroscopy of the G-phonon in single and multi-layer graphene, through coherent anti-Stokes Raman Scattering. The nonlinear signal is dominated by a vibrationally non-resonant background, obscuring the Raman lineshape. We demonstrate that the vibrationally resonant coherent anti-Stokes Raman Scattering peak can be measured by reducing the temporal overlap of the laser excitation pulses, suppressing the vibrationally non-resonant background. We model the spectra, taking into account the electronically resonant nature of both. We show how coherent anti-Stokes Raman Scattering can be used for graphene imaging with vibrational sensitivity.

8.
Sci Rep ; 9(1): 20286, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31889053

RESUMEN

Plasmonic biosensing has emerged as the most sensitive label-free technique to detect various molecular species in solutions and has already proved crucial in drug discovery, food safety and studies of bio-reactions. This technique relies on surface plasmon resonances in ~50 nm metallic films and the possibility to functionalize the surface of the metal in order to achieve selectivity. At the same time, most metals corrode in bio-solutions, which reduces the quality factor and darkness of plasmonic resonances and thus the sensitivity. Furthermore, functionalization itself might have a detrimental effect on the quality of the surface, also reducing sensitivity. Here we demonstrate that the use of graphene and other layered materials for passivation and functionalization broadens the range of metals which can be used for plasmonic biosensing and increases the sensitivity by 3-4 orders of magnitude, as it guarantees stability of a metal in liquid and preserves the plasmonic resonances under biofunctionalization. We use this approach to detect low molecular weight HT-2 toxins (crucial for food safety), achieving phase sensitivity~0.5 fg/mL, three orders of magnitude higher than previously reported. This proves that layered materials provide a new platform for surface plasmon resonance biosensing, paving the way for compact biosensors for point of care testing.

9.
Nat Commun ; 9(1): 5387, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568160

RESUMEN

Heterostructures formed by stacking layered materials require atomically clean interfaces. However, contaminants are usually trapped between the layers, aggregating into randomly located blisters, incompatible with scalable fabrication processes. Here we report a process to remove blisters from fully formed heterostructures. Our method is over an order of magnitude faster than those previously reported and allows multiple interfaces to be cleaned simultaneously. We fabricate blister-free regions of graphene encapsulated in hexagonal boron nitride with an area ~ 5000 µm2, achieving mobilities up to 180,000 cm2 V-1 s-1 at room temperature, and 1.8 × 106 cm2 V-1 s-1 at 9 K. We also assemble heterostructures using graphene intentionally exposed to polymers and solvents. After cleaning, these samples reach similar mobilities. This demonstrates that exposure of graphene to process-related contaminants is compatible with the realization of high mobility samples, paving the way to the development of wafer-scale processes for the integration of layered materials in (opto)electronic devices.

10.
Nat Commun ; 9(1): 308, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358728

RESUMEN

The equilibrium optical phonons of graphene are well characterized in terms of anharmonicity and electron-phonon interactions; however, their non-equilibrium properties in the presence of hot charge carriers are still not fully explored. Here we study the Raman spectrum of graphene under ultrafast laser excitation with 3 ps pulses, which trade off between impulsive stimulation and spectral resolution. We localize energy into hot carriers, generating non-equilibrium temperatures in the ~1700-3100 K range, far exceeding that of the phonon bath, while simultaneously detecting the Raman response. The linewidths of both G and 2D peaks show an increase as function of the electronic temperature. We explain this as a result of the Dirac cones' broadening and electron-phonon scattering in the highly excited transient regime, important for the emerging field of graphene-based photonics and optoelectronics.

12.
Nat Commun ; 8: 14311, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139766

RESUMEN

There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K-1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K-1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K-1, and the ability to resolve temperature variations down to 15 µK.

13.
Nat Commun ; 8: 14024, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102222

RESUMEN

Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

14.
Phys Rev Lett ; 117(14): 147201, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27740785

RESUMEN

We report a spin valve with a few-layer graphene flake bridging highly spin-polarized La_{0.67}Sr_{0.33}MnO_{3} electrodes, whose surfaces are kept clean during lithographic definition. Sharp magnetic switching is verified using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. A naturally occurring high interfacial resistance ∼12 MΩ facilitates spin injection, and a large resistive switching (0.8 MΩ at 10 K) implies a 70-130 µm spin diffusion length that exceeds previous values obtained with sharp-switching electrodes.

15.
Nano Lett ; 16(1): 8-20, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26666842

RESUMEN

The combination of plasmonic nanoparticles and graphene enhances the responsivity and spectral selectivity of graphene-based photodetectors. However, the small area of the metal-graphene junction, where the induced electron-hole pairs separate, limits the photoactive region to submicron length scales. Here, we couple graphene with a plasmonic grating and exploit the resulting surface plasmon polaritons to deliver the collected photons to the junction region of a metal-graphene-metal photodetector. This gives a 400% enhancement of responsivity and a 1000% increase in photoactive length, combined with tunable spectral selectivity. The interference between surface plasmon polaritons and the incident wave introduces new functionalities, such as light flux attraction or repulsion from the contact edges, enabling the tailored design of the photodetector's spectral response. This architecture can also be used for surface plasmon biosensing with direct-electric-redout, eliminating the need of bulky optics.


Asunto(s)
Técnicas Biosensibles , Grafito/química , Metales/química , Nanopartículas/química , Luz , Nanotecnología/métodos , Fotones , Resonancia por Plasmón de Superficie
16.
Opt Lett ; 40(3): 387-90, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25680054

RESUMEN

We demonstrate that the giant chirp of coherent, nanosecond pulses generated in an 846 m long, all-normal dispersion, nanotube mode-locked fiber laser can be compensated using a chirped fiber Bragg grating compressor. Linear compression to 11 ps is reported, corresponding to an extreme compression factor of ∼100. Experimental results are supported by numerical modeling, which is also used to probe the limits of this technique. Our results unequivocally conclude that ultra-long cavity fiber lasers can support stable dissipative soliton attractors and highlight the design simplicity for pulse-energy scaling through cavity elongation.

17.
Nat Commun ; 5: 5824, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25524426

RESUMEN

Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies. Here we report a new class of heterostructures comprising a single-layer (or bilayer) graphene in close proximity to a quantum well created in GaAs and supporting a high-mobility two-dimensional electron gas. In our devices, graphene is naturally hole-doped, thereby allowing for the investigation of electron-hole interactions. We focus on the Coulomb drag transport measurements, which are sensitive to many-body effects, and find that the Coulomb drag resistivity significantly increases for temperatures <5-10 K. The low-temperature data follow a logarithmic law, therefore displaying a notable departure from the ordinary quadratic temperature dependence expected in a weakly correlated Fermi-liquid. This anomalous behaviour is consistent with the onset of strong interlayer correlations. Our heterostructures represent a new platform for the creation of coherent circuits and topologically protected quantum bits.

18.
Nat Nanotechnol ; 9(10): 780-93, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286273

RESUMEN

Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.


Asunto(s)
Electrónica/instrumentación , Grafito/química , Nanoestructuras/química , Óptica y Fotónica/instrumentación , Diseño de Equipo , Luz , Semiconductores
19.
Nano Lett ; 14(7): 3733-42, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24884339

RESUMEN

Graphene's high mobility and Fermi velocity, combined with its constant light absorption in the visible to far-infrared range, make it an ideal material to fabricate high-speed and ultrabroadband photodetectors. However, the precise mechanism of photodetection is still debated. Here, we report wavelength and polarization-dependent measurements of metal-graphene-metal photodetectors. This allows us to quantify and control the relative contributions of both photothermo- and photoelectric effects, both adding to the overall photoresponse. This paves the way for a more efficient photodetector design for ultrafast operating speeds.

20.
Opt Express ; 21(20): 23261-71, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24104240

RESUMEN

We demonstrate a mid-infrared Raman-soliton continuum extending from 1.9 to 3 µm in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system, delivering 12 kW sub-picosecond pulses at 1.95 µm. This simple and robust source of light covers a portion of the atmospheric transmission window.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...