Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473774

RESUMEN

The mutualistic symbiosis relationship between the gut microbiome and their insect hosts has attracted much scientific attention. The native woodwasp, Sirex nitobei, and the invasive European woodwasp, Sirex noctilio, are two pests that infest pines in northeastern China. Following its encounter with the native species, however, there is a lack of research on whether the gut microbiome of S. noctilio changed, what causes contributed to these alterations, and whether these changes were more conducive to invasive colonization. We used high-throughput and metatranscriptomic sequencing to investigate S. noctilio larval gut and frass from four sites where only S. noctilio and both two Sirex species and investigated the effects of environmental factors, biological interactions, and ecological processes on S. noctilio gut microbial community assembly. Amplicon sequencing of two Sirex species revealed differential patterns of bacterial and fungal composition and functional prediction. S. noctilio larval gut bacterial and fungal diversity was essentially higher in coexistence sites than in separate existence sites, and most of the larval gut bacterial and fungal community functional predictions were significantly different as well. Moreover, temperature and precipitation positively correlate with most of the highly abundant bacterial and fungal genera. Source-tracking analysis showed that S. noctilio larvae at coexistence sites remain dependent on adult gut transmission (vertical transmission) or recruitment to frass (horizontal transmission). Meanwhile, stochastic processes of drift and dispersal limitation also have important impacts on the assembly of S. noctilio larval gut microbiome, especially at coexistence sites. In summary, our results reveal the potential role of changes in S. noctilio larval gut microbiome in the successful colonization and better adaptation of the environment.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Pinus , Avispas , Animales , Avispas/microbiología , Larva
2.
CNS Neurosci Ther ; 30(2): e14553, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38334231

RESUMEN

In recent years, sevoflurane and isoflurane are the most popular anesthetics in general anesthesia for their safe, rapid onset, and well tolerant. Nevertheless, many studies reported their neurotoxicity among pediatric and aged populations. This effect is usually manifested as cognitive impairment such as perioperative neurocognitive disorders. The wide application of sevoflurane and isoflurane during general anesthesia makes their safety a major health concern. Evidence indicates that iron dyshomeostasis and ferroptosis may establish a role in neurotoxicity of sevoflurane and isoflurane. However, the mechanisms of sevoflurane- and isoflurane-induced neuronal injury were not fully understood, which poses a barrier to the treatment of its neurotoxicity. We, therefore, reviewed the current knowledge on mechanisms of iron dyshomeostasis and ferroptosis and aimed to promote a better understanding of their roles in sevoflurane- and isoflurane-induced neurotoxicity.


Asunto(s)
Anestésicos por Inhalación , Ferroptosis , Isoflurano , Éteres Metílicos , Humanos , Niño , Anciano , Isoflurano/efectos adversos , Sevoflurano/efectos adversos , Anestésicos por Inhalación/efectos adversos , Trastornos Neurocognitivos , Homeostasis
3.
BMJ ; 380: e072333, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36863733
4.
PLoS One ; 18(2): e0281313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36753475

RESUMEN

BACKGROUND: Now the occurrence of delirium is more concerning to clinicians and psychiatrists. It has been reported that vitamin D deficiency may be a relevant factor in the development of delirium in hospitalized patients. STUDY OBJECTIVE: To investigate the association between vitamin D concentration and delirium in hospitalized patients. DESIGN: Meta-analysis. METHODS: A systematic literature search was conducted using PubMed, EMBASE, and the Cochrane Library. The primary outcome was the occurrence of delirium in the inpatient setting. Odds ratios (OR) were calculated with random or fixed effects models. RESULTS: In this article, we define the normal range of vitamin D concentrations as greater than 75 nmol / L, 50-75 nmol / L as vitamin D insufficiency, 25-50 nmol / L as vitamin D deficiency, and less than 25 nmol / L as vitamin D severe deficiency. The Results showed that severe vitamin D deficiency (OR: 1.98 [1.41-2.79], P<0.001) and vitamin D deficiency (OR: 1.50 [1.12-2.00], P = 0.006) were more likely to develop delirium than normal vitamin D levels. Subgroup analysis also revealed that low vitamin D concentrations were associated with a higher incidence of delirium, whether the cutoff point was 25 nmol/L (OR: 1.52 [1.40-1.64], P<0.001), 50 nmol/L (OR: 1.47 [1.19-1.82], P<0.001), or 75 nmol/L (OR: 1.54 [1.21-1.96], P<0.001). The included studies scored medium and high on the Newcastle-Ottawa quality assessment scale. CONCLUSION: Compared with normal vitamin D levels, severe vitamin D deficiency and vitamin D deficiency, but not vitamin D insufficiency, are associated with a higher incidence of delirium in hospitalized patients. TRIAL REGISTRATION: This review was registered in the PROSPERO database under identifier CRD42021271347. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021271347.


Asunto(s)
Delirio , Deficiencia de Vitamina D , Humanos , Vitamina D , Vitaminas , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Bases de Datos Factuales , Delirio/etiología , Delirio/complicaciones
5.
ACS Chem Neurosci ; 14(6): 1146-1155, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36802490

RESUMEN

Sevoflurane (Sevo) is one of the most commonly used general anesthetics for infants and young children. We investigated whether Sevo impairs neurological functions, myelination, and cognition via the γ-aminobutyric acid A receptor (GABAAR) and Na+-K+-2Cl- cotransporter (NKCC1) in neonatal mice. On postnatal days 5-7, mice were exposed to 3% Sevo for 2 h. On postnatal day 14, mouse brains were dissected, and oligodendrocyte precursor cell line level lentivirus knockdown of GABRB3, immunofluorescence, and transwell migration assays were performed. Finally, behavioral tests were conducted. Multiple Sevo exposure groups exhibited increased neuronal apoptosis levels and decreased neurofilament protein levels in the mouse cortex compared with the control group. Sevo exposure inhibited the proliferation, differentiation, and migration of the oligodendrocyte precursor cells, thereby affecting their maturation process. Electron microscopy revealed that Sevo exposure reduced myelin sheath thickness. The behavioral tests showed that multiple Sevo exposures induced cognitive impairment. GABAAR and NKCC1 inhibition provided protection against Sevo-induced neurotoxicity and cognitive dysfunction. Thus, bicuculline and bumetanide can protect against Sevo-induced neuronal injury, myelination impairment, and cognitive dysfunction in neonatal mice. Furthermore, GABAAR and NKCC1 may be mediators of Sevo-induced myelination impairment and cognitive dysfunction.


Asunto(s)
Anestésicos por Inhalación , Bumetanida , Animales , Ratones , Sevoflurano/farmacología , Bumetanida/farmacología , Bicuculina/farmacología , Animales Recién Nacidos , Cognición , Ácido gamma-Aminobutírico , Anestésicos por Inhalación/toxicidad
6.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835240

RESUMEN

Anthocyanins produce different-colored pigments in plant organs, which provide ornamental value. Thus, this study was conducted to understand the mechanism of anthocyanin synthesis in ornamental plants. Phoebe bournei, a Chinese specialty tree, has high ornamental and economic value due to its rich leaf color and diverse metabolic products. Here, the metabolic data and gene expression of red P. bournei leaves at the three developmental stages were evaluated to elucidate the color-production mechanism in the red-leaved P. bournei species. First, metabolomic analysis identified 34 anthocyanin metabolites showing high levels of cyanidin-3-O-glucoside (cya-3-O-glu) in the S1 stage, which may suggest that it is a characteristic metabolite associated with the red coloration of the leaves. Second, transcriptome analysis showed that 94 structural genes were involved in anthocyanin biosynthesis, especially flavanone 3'-hydroxy-lase (PbF3'H), and were significantly correlated with the cya-3-O-glu level. Third, K-means clustering analysis and phylogenetic analyses identified PbbHLH1 and PbbHLH2, which shared the same expression pattern as most structural genes, indicating that these two PbbHLH genes may be regulators of anthocyanin biosynthesis in P. bournei. Finally, overexpression of PbbHLH1 and PbbHLH2 in Nicotiana tabacum leaves triggered anthocyanin accumulation. These findings provide a basis for cultivating P. bournei varieties that have high ornamental value.


Asunto(s)
Antocianinas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Antocianinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Filogenia , Pigmentación/genética , Hojas de la Planta/metabolismo , Perfilación de la Expresión Génica , Glucósidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Proteínas de Plantas/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-36674375

RESUMEN

As a great practice of building a community of shared future for mankind, the Belt and Road Initiative is facing geopolitical risk brought by great power games, regional conflicts and terrorism. It is an important mission of geopolitical research to scientifically deal with the geopolitical risk along the Belt and Road. This study systematically constructs the geopolitical risk assessment index system and analyzes the spatiotemporal evolution, obstacle factors and risk types of geopolitical risk of countries along the Belt and Road by using the entropy weight TOPSIS model, obstacle degree model and minimum variance method. The research results showed that: (1) From 2005 to 2020, the polarization of geopolitical risk in countries along the Belt and Road was very significant, and the overall trend of geopolitical risk tended to deteriorate. (2) The Middle East and Eastern Europe were the most important geopolitical risk zones along the Belt and Road, and Afghanistan, Iraq, Russia and Ukraine were the main high geopolitical risk centers, with significant risk spillover effects from these centers. (3) Terrorism and close relations with the United States were the most important obstacle factors for geopolitical risk in countries along the Belt and Road, and military intervention politics, trade dependence degree and foreign debt burden were important obstacle factors for geopolitical risk in countries along the Belt and Road. (4) Geopolitical risk along the Belt and Road can be divided into sovereign risk dominant type, sovereign and military risk dominant type, sovereign and major power intervention risk dominant type, and sovereign and military and major power intervention risk jointly dominated type, among which sovereign and military and major power intervention risk jointly dominated type was the most important geopolitical risk type. In order to scientifically deal with geopolitical risk in countries along the Belt and Road, it is necessary to strengthen geopolitical risk awareness, pay attention to the dominant geopolitical risk factors, strengthen the control of regional geopolitical risk spillover and formulate reasonable risk prevention and control scheme based on geopolitical risk types.


Asunto(s)
Ambiente , Análisis Espacio-Temporal , Afganistán , China , Europa Oriental , Irak , Medio Oriente , Ucrania
8.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203715

RESUMEN

Calmodulin (CaM) and calmodulin-like (CML) proteins are major Ca2+ sensors involved in the regulation of plant development and stress responses by converting Ca2+ signals into appropriate cellular responses. However, characterization and expression analyses of CaM/CML genes in the precious species, Phoebe bournei, remain limited. In this study, five PbCaM and sixty PbCML genes were identified that only had EF-hand motifs with no other functional domains. The phylogenetic tree was clustered into 11 subgroups, including a unique clade of PbCaMs. The PbCaMs were intron-rich with four EF-hand motifs, whereas PbCMLs had two to four EF-hands and were mostly intronless. PbCaMs/CMLs were unevenly distributed across the 12 chromosomes of P. bournei and underwent purifying selection. Fragment duplication was the main driving force for the evolution of the PbCaM/CML gene family. Cis-acting element analysis indicated that PbCaMs/CMLs might be related to hormones, growth and development, and stress response. Expression analysis showed that PbCaMs were generally highly expressed in five different tissues and under drought stress, whereas PbCMLs showed specific expression patterns. The expression levels of 11 candidate PbCaMs/CMLs were responsive to ABA and MeJA, suggesting that these genes might act through multiple signaling pathways. The overexpression of PbCaM3/CML13 genes significantly increased the tolerance of yeast cells to drought stress. The identification and characterization of the CaM/CML gene family in P. bournei laid the foundation for future functional studies of these genes.


Asunto(s)
Lauraceae , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Calmodulina/genética , Sequías , Filogenia , Cromosomas Humanos Par 12 , Saccharomyces cerevisiae
9.
Oxid Med Cell Longev ; 2022: 4435161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238640

RESUMEN

Background: Sevoflurane is one of the most popular inhalational anesthetics during perioperative period but presenting neurotoxicity among pediatric and aged populations. Recent experiments in vivo and in vitro have indicated that ferroptosis may contribute to the neurotoxicity of sevoflurane anesthesia. However, the exact mechanism is still unclear. Methods: In current study, we explored the differential expressed genes (DEGs) in HT-22 mouse hippocampal neuronal cells after sevoflurane anesthesia using RNA-seq. Differential expressed ferroptosis-related genes (DEFRGs) were screened and analyzed by Gene Ontology (GO) and pathway enrichment analysis. Protein-to-protein interaction (PPI) network was constructed by the Search Tool for the Retrieval of Interacting Genes (STRING). Significant modules and the hub genes were identified by using Cytoscape. The Connectivity Map (cMAP) was used for screening drug candidates targeting the identified DEFRGs. Potential TF-gene network and drug-gene pairs were established towards the hub genes. In final, we validated these results in experiments. Results: A total of 37 ferroptosis-related genes (18 upregulated and 19 downregulated) after sevoflurane exposure in hippocampal neuronal cells were finally identified. These differentially expressed genes were mainly involved into the biological processes of cellular response to oxidative stress. Pathway analysis indicated that these genes were involved in ferroptosis, mTOR signaling pathway, and longevity-regulating pathway. PPI network was constructed. 10 hub genes including Prkaa2, Chac1, Arntl, Tfrc, Slc7a11, Atf4, Mgst1, Lpin1, Atf3, and Sesn2 were found. Top 10 drug candidates, gene-drug networks, and TFs targeting these genes were finally identified. These results were validated in experiments. Conclusion: Our results suggested that ferroptosis-related genes play roles in sevoflurane anesthesia-related hippocampal neuron injury and offered the hub genes and potential therapeutic agents for investigating and treatment of this neurotoxicity after sevoflurane exposure. Finally, therapeutic effect of these drug candidates and function of potential ferroptosis targets should be further investigated for treatment and clarifying mechanisms of sevoflurane anesthesia-induced neuron injury in future research.


Asunto(s)
Anestésicos , Ferroptosis , Factores de Transcripción ARNTL , Animales , Biología Computacional/métodos , Ferroptosis/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Hipocampo , Ratones , Fosfatidato Fosfatasa/genética , Sevoflurano/toxicidad , Serina-Treonina Quinasas TOR/genética
10.
Front Cell Neurosci ; 16: 914957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212689

RESUMEN

Developmental neurons received with sevoflurane, the commonly used inhalational anesthetic agent in clinical surgery, several times tend to be destroyed. Microglia, the resident immune cells of the central nervous system (CNS), are activated after sevoflurane exposure, accompanied by releasing proinflammatory cytokines that damage developing neurons. The sevoflurane-induced neurotoxicity could be attributed to activated microglia presenting proinflammatory and anti-inflammatory functions. Proinflammatory microglia release cytokines to impair the CNS, while anti-inflammatory microglia engulf damaged neurons to maintain CNS homeostasis. Sevoflurane exposure promotes the secretion of proinflammatory cytokines by microglia, inhibiting the microglial phagocytic function. Microglia with poor phagocytic function cannot engulf damaged neurons, leading to the accumulation of damaged neurons. The mechanism underlying poor phagocytic function may be attributed to mitochondrial dysfunction of microglia induced by sevoflurane exposure, in which affected mitochondria cannot generate adequate ATP and NAD to satisfy the energy demand. We discovered that sevoflurane treatment impaired the mitochondrial metabolism of microglia, which resulted in NAD deficiency and couldn't produce sufficient energy to clear damaged neurons to maintain CNS development. Our findings provide an explanation of a new mechanism underlying sevoflurane-induced neurotoxicity.

11.
Int J Biol Macromol ; 222(Pt A): 325-336, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115455

RESUMEN

Monochamus saltuarius (Coleoptera: Cerambycidae) was reported as the vector beetle of the pine wood nematode (PWN, Bursaphelenchus xylophilus) in Japan and Europe. It was first reported to transmitted the PWN to native Pinus species in 2018 in Liaoning Province, China. However, the lack of genomic resources has limited the in-depth understanding of its interspecific relationship with PWN. Here, we obtained a chromosome-level reference genome of M. saltuarius combining Illumina, Nanopore and Hi-C sequencing technologies. We assembled the scaffolds into ten chromosomes (including an X chromosome) and obtained a 682.23 Mb chromosome-level genome with a N50 of 73.69 Mb. In total, 427.67 Mb (62.69 %) repeat sequences were identified and 14, 492 protein-coding genes were predicted, of which 93.06 % were annotated. We described the mth/mthl, P450, OBP and OR gene families associated with the vector beetle's development and resistance, as well as the host selection and adaptation, which serve as a valuable resource for understanding the host adaptation in insects during evolution. This high quality reference genome of M. saltuarius also provide new avenues for researching the mechanism of this synergistic damage between vector beetles and PWN.


Asunto(s)
Escarabajos , Pinus , Tylenchida , Animales , Tylenchida/genética , Escarabajos/genética , Pinus/genética , Cromosomas , China
12.
Life Sci ; 308: 120951, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36103958

RESUMEN

AIMS: The aim of this study was to investigate the role of depolarizing activation of Na+-Ca2+ exchanger (NCX) by oligodendrocyte progenitor cells (OPC) in the effect of sevoflurane on myelination. MAIN METHODS: On postnatal days 7, 8, and 9, mice were exposed to 3 % sevoflurane for 2 h per day. The proliferation, differentiation, and myelin sheath of OPC were observed with immunofluorescence, quantitative real-time polymerase chain reaction (QRT-PCR), and transmission electron microscopy (TEM) at various time points. The open field, Y maze, and new object recognition tests were used to measure spatial learning and memory. siRNA was used for the knockdown NCX1 in human OPC (HOPC) before sevoflurane exposure; the Transwell migration assay was used to measure cell migration ability and Fluo 4-AM was used to measure intracellular Ca2+ concentration. KEY FINDINGS: Pretreatment with an NCX inhibitor attenuated the proliferation and differentiation of OPC induced by sevoflurane and induced a remarkable increase in platelet-derived growth factor receptor-alpha (PDGFRα), 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase), oligodendrocyte transcription factor 2 (Olig2), and homeodomain protein NK2 homeobox 2 (NKX2.2) levels. Pretreatment with an NCX inhibitor alleviated the sevoflurane-induced myelination disorder and cognitive impairment. The decreased cell migration and increased intracellular Ca2+ concentration observed in the siRNA-negative control group was reversed in the sevoflurane plus siRNA-NCX1 group. SIGNIFICANCE: This study suggests that repeated sevoflurane exposure in newborn mice leads to depolarization of OPC, which leads to Ca2+ influx through NCX and affects OPC proliferation, migration, differentiation, and myelination, ultimately leading to cognitive impairment.


Asunto(s)
Células Precursoras de Oligodendrocitos , Intercambiador de Sodio-Calcio , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Calcio/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Vaina de Mielina/metabolismo , Nucleótidos Cíclicos/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Sevoflurano/metabolismo , Sevoflurano/farmacología , Intercambiador de Sodio-Calcio/metabolismo
13.
Front Cell Neurosci ; 16: 964227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176629

RESUMEN

Background: In neonatal mice, anesthesia with sevoflurane depolarizes the GABA Type A receptor (GABAAR), which leads to cognitive impairment. Calcium accumulation in neurons can lead to neurotoxicity. Voltage-gated calcium channels (VGCCs) can increase intracellular calcium concentration under isoflurane and hypoxic conditions. The underlying mechanisms remain largely unknown. Methods: Six-day-old mice were anesthetized with 3% sevoflurane for 2 h/day for 3 days. The Y-Maze, new object recognition (NOR) test, the Barnes maze test, immunoassay, immunoblotting, the TUNEL test, and Golgi-Cox staining were used to assess cognition, calcium concentration, inflammatory response, GABAAR activation, VGCC expression, apoptosis, and proliferation of hippocampal nerve cells in mice and HT22 cells. Results: Compared with the control group, mice in the sevoflurane group had impaired cognitive function. In the sevoflurane group, the expression of Gabrb3 and Cav1.2 in the hippocampal neurons increased (p < 0.01), the concentration of calcium ions increased (p < 0.01), inflammatory reaction and apoptosis of neurons increased (p < 0.01), the proliferation of neurons in the DG area decreased (p < 0.01), and dendritic spine density decreased (p < 0.05). However, the inhibition of Gabrb3 and Cav1.2 alleviated cognitive impairment and reduced neurotoxicity. Conclusions: Sevoflurane activates VGCCs by inducing GABAAR depolarization, resulting in cognitive impairment. Activated VGCCs cause an increase in intracellular calcium concentration and an inflammatory response, resulting in neurotoxicity and cognitive impairment.

14.
Front Syst Neurosci ; 16: 848362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664684

RESUMEN

Oligodendrocytes (OLs) participate in the formation of myelin, promoting the propagation of action potentials, and disruption of their proliferation and differentiation leads to central nervous system (CNS) damage. As surgical techniques have advanced, there is an increasing number of children who undergo multiple procedures early in life, and recent experiments have demonstrated effects on brain development after a single or multiple anesthetics. An increasing number of clinical studies showing the effects of anesthetic drugs on the development of the nervous system may mainly reside in the connections between neurons, where myelin development will receive more research attention. In this article, we review the relationship between anesthesia exposure and the brain and OLs, provide new insights into the development of the relationship between anesthesia exposure and OLs, and provide a theoretical basis for clinical prevention of neurodevelopmental risks of general anesthesia drugs.

15.
Front Physiol ; 13: 882792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547586

RESUMEN

A special mutual relationship exists between the pine wood nematode (PWN) Bursaphelenchus xylophilus and its vector beetles of genus Monochamus, which enables PWN to spread, at the same time provides longhorned beetles with more weak hosts. PWN are attracted to the pupal chambers and then carried inside the trachea of beetle adults, which is a necessary part to complete the B. xylophilus infection cycle. The growth and immune responses of the vector beetle will affect this carrying process, however, they were rarely studied in Monochamus saltuarius. Real-time quantitative polymerase chain reaction (RT-qPCR), one of the most common methods for quantitative gene expression analysis, was performed to explore the key genes and pathways involved in the growth, development and immune responses of M. saltuarius at different developmental stages associated with infection of PWN and PWN treatment conditions. To enhance the accuracy of RT-qPCR data, the expression of target genes needs to be normalized with reference genes, which are stably expressed under varied experimental conditions. In our study, the stability of 14 candidate reference genes in M. saltuarius samples at different developmental stages associated with infection of PWN or PWN treatment conditions was evaluated using delta Ct, geNorm, NormFinder, BestKeeper and RefFinder algorithms. Moreover, KLF gene was used to validate the stability of the selected reference genes. Under experimental conditions of this study, RPL7 and TER were suitable reference genes at different developmental stages associated with infection of PWN. RPL7 and RPS5 were considered the most stable reference genes in the pupae treated with PWN. RPS5 and SNX6 could be used as reference genes in the adults treated with PWN. RPL7, EF1-γ, and RPS5 could be used as stable reference genes in all the samples. This work is the first to evaluate reference genes in M. saltuarius, laying a foundation for further gene expression experimental procedures and understanding the phoretic relationship between M. saltuarius and B. xylophilus.

16.
Insects ; 13(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35447780

RESUMEN

Sirex noctilio is a major international quarantine pest that recently emerged in northeast China to specifically invade conifers. During female oviposition, venom is injected into the host together with its symbiotic fungus to alter the normal Pinus physiology and weaken or even kill the tree. In China, the Mongolian pine (Pinus sylvestris var. mongolica), an important wind-proof and sand-fixing species, is the unique host of S. noctilio. To explore the interplay between S. noctilio venom and Mongolian pine, we performed a transcriptome comparative analysis of a 10-year-old Mongolian pine after wounding and inoculation with S. noctilio venom. The analysis was performed at 12 h, 24 h and 72 h. PacBio ISO-seq was used and integrated with RNA-seq to construct an accurate full-length transcriptomic database. We obtained 52,963 high-precision unigenes, consisting of 48,654 (91.86%) unigenes that were BLASTed to known sequences in the public database and 4309 unigenes without any annotation information, which were presumed to be new genes. The number of differentially expressed genes (DEGs) increased with the treatment time, and the DEGs were most abundant at 72 h. A total of 706 inoculation-specific DEGs (475 upregulated and 231 downregulated) and 387 wounding-specific DEGs (183 upregulated and 204 downregulated) were identified compared with the control. Under venom stress, we identified 6 DEGs associated with reactive oxygen species (ROS) and 20 resistance genes in Mongolian pine. Overall, 52 transcription factors (TFs) were found under venom stress, 45 of which belonged to the AP2/ERF TF family and were upregulated. A total of 13 genes related to the photosystem, 3 genes related photo-regulation, and 9 TFs were identified under wounding stress. In conclusion, several novel putative genes were found in Mongolian pine by PacBio ISO seq. Meanwhile, we also identified various genes that were resistant to S. noctilio venom, such as GAPDH, GPX, CAT, FL2, CERK1, and HSP83A, etc.

17.
J Fungi (Basel) ; 7(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34947047

RESUMEN

Sirex noctilio along with its mutualistic fungal symbiont, Amylostereum areolatum (a white rot fungus), is an invasive pest that causes excessive damage to Pinus plantations in Northeast China. In 2015, S. noctilio were found to attack Pinus sylvestris var. mongolica, and often share larval habitat with the native woodwasp, S. nitobei. The objective of this study was to determine the possible origin(s) of the introduced pest complex in China and analyse the genetic diversity between A. areolatum isolated from invasive S. noctilio, native S. nitobei and other woodwasps collected from Europe (native range) and other countries. Phylogenetic analyses were performed using the intergenic spacer (IGS) dataset and the combined 4-locus dataset (the internal transcribed spacer region (ITS), translation elongation factor alpha 1 (tef1), DNA-directed ribosomal polymerase II (RPB2), and mitochondrial small subunit (mtSSU)) of three Amylostereum taxa. The multilocus genotyping of nuclear ribosomal regions and protein coding genes revealed at least three distinct multilocus genotypes (MLGs) of the fungus associated with invasive S. noctilio populations in Northeast China, which may have come from North America or Europe. The IGS region of A. areolatum carried by S. noctilio from China was designated type B1D2. Our results showed a lack of fidelity (the paradigm of obligate fidelity to a single fungus per wasp species) between woodwasp hosts and A. areolatum. We found that the native S. nitobei predominantly carried A. areolatum IGS-D2, but a low percentage of females instead carried A. areolatum IGS-B1D2 (MLG A13), which was presumably due to horizontal transmission from S. noctilio, during the sequential use of the same wood for larval development. The precise identification of the A. areolatum genotypes provides valuable insight into co-evolution between Siricidae and their symbionts, as well as understanding of the geographical origin and history of both Sirex species and their associated fungi.

18.
Toxins (Basel) ; 13(8)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34437434

RESUMEN

The wood-boring woodwasp Sirex nitobei is a native pest in Asia, infecting and weakening the host trees in numerous ecological and commercial coniferous forest plantations. In China, hosts of S. nitobei are diverse, so the pest has spread to several provinces of China, resulting in considerable economic and ecological damage. During female oviposition, S. nitobei venom along with arthrospores of the symbiotic fungus Amylostereum areolatum or A. chaetica is injected into host trees, and the combination of these two biological factors causes the death of xylem host trees. The presence of venom alone causes only the yellowing and wilting of needles. In this study, we constructed the venom gland transcriptome of S. nitobei for the first time and a total of 15,036 unigenes were acquired. From the unigenes, 11,560 ORFs were identified and 537 encoding protein sequences with signal peptides at the N-terminus. Then, we used the venomics approach to characterize the venom composition of female S. nitobei and predicted 1095 proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. We focused on seven proteins that were both highly expressed in the venom gland transcriptome and predicted in the crude venom proteome. These seven proteins are laccase-2, laccase-3, a protein belonging to the Kazal family, chitooligosaccharidolytic ß-N-acetylglucosaminidase, beta-galactosidase, icarapin-like protein, and waprin-Thr1-like protein. Using quantitative real-time PCR (qRT-PCR), we also proved that the genes related to these seven proteins are specifically expressed in the venom glands. Finally, we revealed the functional role of S. nitobei venom in the physiological response of host trees. It can not only promote the colonization of symbiotic fungus but contribute to the development of eggs and larvae. This study provides a deeper understanding of the molecular mechanism of the woodwasp-pine interaction.


Asunto(s)
Glándulas Exocrinas/metabolismo , Proteínas de Insectos , Venenos de Avispas , Avispas , Animales , Basidiomycota , Femenino , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Pinus/microbiología , Enfermedades de las Plantas , Proteoma/análisis , Proteoma/genética , Transcriptoma , Venenos de Avispas/química , Venenos de Avispas/genética , Avispas/genética , Avispas/metabolismo
19.
Front Microbiol ; 12: 827241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095826

RESUMEN

A strict relationship exists between the Sirex noctilio and the Amylostereum areolatum, which is carried and spread by its partner. The growth and development of this symbiotic fungus is key to complete the life history of the Sirex woodwasp. Real-time quantitative polymerase chain reaction (RT-qPCR) is used to measure gene expression in samples of A. areolatum at different growth stages and explore the key genes and pathways involved in the growth and development of this symbiotic fungus. To obtain accurate RT-qPCR data, target genes need to be normalized by reference genes that are stably expressed under specific experimental conditions. In our study, the stability of 10 candidate reference genes in symbiotic fungal samples at different growth and development stages was evaluated using geNorm, NormFinder, BestKeeper, delta Ct methods, and RefFinder. Meanwhile, laccase1 was used to validate the stability of the selected reference gene. Under the experimental conditions of this study, p450, CYP, and γ-TUB were identified as suitable reference genes. This work is the first to systematically evaluate the reference genes for RT-qPCR results normalization during the growth of this symbiotic fungus, which lays a foundation for further gene expression experiments and understanding the symbiotic relationship and mechanism between S. noctilio and A. areolatum.

20.
Int J Mol Sci ; 21(22)2020 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266512

RESUMEN

An obligate mutualistic relationship exists between the fungus Amylostereum areolatum and woodwasp Sirex noctilio. The fungus digests lignin in the host pine, providing essential nutrients for the growing woodwasp larvae. However, the functional properties of this symbiosis are poorly described. In this study, we identified, cloned, and characterized 14 laccase genes from A. areolatum. These genes encoded proteins of 508 to 529 amino acids and contained three typical copper-oxidase domains, necessary to confer laccase activity. Besides, we performed molecular docking and dynamics simulation of the laccase proteins in complex with lignin compounds (monomers, dimers, trimers, and tetramers). AaLac2, AaLac3, AaLac6, AaLac8, and AaLac10 were found that had low binding energies with all lignin model compounds tested and three of them could maintain stability when binding to these compounds. Among these complexes, amino acid residues ALA, GLN, LEU, PHE, PRO, and SER were commonly present. Our study reveals the molecular basis of A. areolatum laccases interacting with lignin, which is essential for understanding how the fungus provides nutrients to S. noctilio. These findings might also provide guidance for the control of S. noctilio by informing the design of enzyme mutants that could reduce the efficiency of lignin degradation.


Asunto(s)
Basidiomycota/enzimología , Lacasa/metabolismo , Modelos Moleculares , Animales , Basidiomycota/genética , Proteínas Fúngicas/metabolismo , Lacasa/química , Lacasa/genética , Ligandos , Lignina/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Filogenia , Análisis de Secuencia de Proteína , Avispas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...