Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(1): e0244173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411744

RESUMEN

The novel coronavirus (COVID-19) is an emergent disease that initially had no historical data to guide scientists on predicting/ forecasting its global or national impact over time. The ability to predict the progress of this pandemic has been crucial for decision making aimed at fighting this pandemic and controlling its spread. In this work we considered four different statistical/time series models that are readily available from the 'forecast' package in R. We performed novel applications with these models, forecasting the number of infected cases (confirmed cases and similarly the number of deaths and recovery) along with the corresponding 90% prediction interval to estimate uncertainty around pointwise forecasts. Since the future may not repeat the past for this pandemic, no prediction model is certain. However, any prediction tool with acceptable prediction performance (or prediction error) could still be very useful for public-health planning to handle spread of the pandemic, and could policy decision-making and facilitate transition to normality. These four models were applied to publicly available data of the COVID-19 pandemic for both the USA and Italy. We observed that all models reasonably predicted the future numbers of confirmed cases, deaths, and recoveries of COVID-19. However, for the majority of the analyses, the time series model with autoregressive integrated moving average (ARIMA) and cubic smoothing spline models both had smaller prediction errors and narrower prediction intervals, compared to the Holt and Trigonometric Exponential smoothing state space model with Box-Cox transformation (TBATS) models. Therefore, the former two models were preferable to the latter models. Given similarities in performance of the models in the USA and Italy, the corresponding prediction tools can be applied to other countries grappling with the COVID-19 pandemic, and to any pandemics that can occur in future.


Asunto(s)
/epidemiología , Predicción/métodos , Modelos Biológicos , /mortalidad , Control de Enfermedades Transmisibles , Simulación por Computador , Toma de Decisiones , Humanos , Italia/epidemiología , Estados Unidos/epidemiología
2.
JMIR Med Inform ; 8(12): e23530, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33325834

RESUMEN

BACKGROUND: Despite steady gains in life expectancy, individuals with cystic fibrosis (CF) lung disease still experience rapid pulmonary decline throughout their clinical course, which can ultimately end in respiratory failure. Point-of-care tools for accurate and timely information regarding the risk of rapid decline is essential for clinical decision support. OBJECTIVE: This study aims to translate a novel algorithm for earlier, more accurate prediction of rapid lung function decline in patients with CF into an interactive web-based application that can be integrated within electronic health record systems, via collaborative development with clinicians. METHODS: Longitudinal clinical history, lung function measurements, and time-invariant characteristics were obtained for 30,879 patients with CF who were followed in the US Cystic Fibrosis Foundation Patient Registry (2003-2015). We iteratively developed the application using the R Shiny framework and by conducting a qualitative study with care provider focus groups (N=17). RESULTS: A clinical conceptual model and 4 themes were identified through coded feedback from application users: (1) ambiguity in rapid decline, (2) clinical utility, (3) clinical significance, and (4) specific suggested revisions. These themes were used to revise our application to the currently released version, available online for exploration. This study has advanced the application's potential prognostic utility for monitoring individuals with CF lung disease. Further application development will incorporate additional clinical characteristics requested by the users and also a more modular layout that can be useful for care provider and family interactions. CONCLUSIONS: Our framework for creating an interactive and visual analytics platform enables generalized development of applications to synthesize, model, and translate electronic health data, thereby enhancing clinical decision support and improving care and health outcomes for chronic diseases and disorders. A prospective implementation study is necessary to evaluate this tool's effectiveness regarding increased communication, enhanced shared decision-making, and improved clinical outcomes for patients with CF.

3.
Expert Rev Respir Med ; 14(7): 737-748, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32264725

RESUMEN

INTRODUCTION: Natural, social, and constructed environments play a critical role in the development and exacerbation of respiratory diseases. However, less is known regarding the influence of these environmental/community risk factors on the health of individuals living with cystic fibrosis (CF), compared to other pulmonary disorders. AREAS COVERED: Here, we review current knowledge of environmental exposures related to CF, which suggests that environmental/community risk factors do interact with the respiratory tract to affect outcomes. Studies discussed in this review were identified in PubMed between March 2019 and March 2020. Although the limited data available do not suggest that avoiding potentially detrimental exposures other than secondhand smoke could improve outcomes, additional research incorporating novel markers of environmental exposures and community characteristics obtained at localized levels is needed. EXPERT OPINION: As we outline, some environmental exposures and community characteristics are modifiable; if not by the individual, then by policy. We recommend a variety of strategies to advance understanding of environmental influences on CF disease progression.

4.
Pediatr Emerg Care ; 36(7): e417-e422, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31136457

RESUMEN

Frequently overridden alerts in the electronic health record can highlight alerts that may need revision. This method is a way of fine-tuning clinical decision support. We evaluated the feasibility of a complementary, yet different method that directly involved pediatric emergency department (PED) providers in identifying additional medication alerts that were potentially incorrect or intrusive. We then evaluated the effect subsequent resulting modifications had on alert salience. METHODS: We performed a prospective, interventional study over 34 months (March 6, 2014, to December 31, 2016) in the PED. We implemented a passive alert feedback mechanism by enhancing the native electronic health record functionality on alert reviews. End-users flagged potentially incorrect/bothersome alerts for review by the study's team. The alerts were updated when clinically appropriate and trends of the impact were evaluated. RESULTS: More than 200 alerts were reported from both inside and outside the PED, suggesting an intuitive approach. On average, we processed 4 reviews per week from the PED, with attending physicians as major contributors. The general trend of the impact of these changes seems favorable. DISCUSSION: The implementation of the review mechanism for user-selected alerts was intuitive and sustainable and seems to be able to detect alerts that are bothersome to the end-users. The method should be run in parallel with the traditional data-driven approach to support capturing of inaccurate alerts. CONCLUSIONS: User-centered, context-specific alert feedback can be used for selecting suboptimal, interruptive medication alerts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA