Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34969536

RESUMEN

Social-ecological networks (SENs) represent the complex relationships between ecological and social systems and are a useful tool for analyzing and managing ecosystem services. However, mainstreaming the application of SENs in ecosystem service research has been hindered by a lack of clarity about how to match research questions to ecosystem service conceptualizations in SEN (i.e., as nodes, links, attributes, or emergent properties). Building from different disciplines, we propose a typology to represent ecosystem service in SENs and identify opportunities and challenges of using SENs in ecosystem service research. Our typology provides guidance for this growing field to improve research design and increase the breadth of questions that can be addressed with SEN to understand human-nature interdependencies in a changing world.

2.
Glob Food Sec ; 28: 100494, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34513582

RESUMEN

The COVID-19 pandemic and subsequent lockdowns are creating health and economic crises that threaten food and nutrition security. The seafood sector provides important sources of nutrition and employment, especially in low-income countries, and is highly globalized allowing shocks to propagate. We studied COVID-19-related disruptions, impacts, and responses to the seafood sector from January through May 2020, using a food system resilience 'action cycle' framework as a guide. We find that some supply chains, market segments, companies, small-scale actors and civil society have shown initial signs of greater resilience than others. COVID-19 has also highlighted the vulnerability of certain groups working in- or dependent on the seafood sector. We discuss early coping and adaptive responses combined with lessons from past shocks that could be considered when building resilience in the sector. We end with strategic research needs to support learning from COVID-19 impacts and responses.

3.
Nat Commun ; 12(1): 5413, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526495

RESUMEN

Numerous studies have focused on the need to expand production of 'blue foods', defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographic patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets.


Asunto(s)
Peces/crecimiento & desarrollo , Abastecimiento de Alimentos/estadística & datos numéricos , Alimentos , Renta/estadística & datos numéricos , Alimentos Marinos/estadística & datos numéricos , África , Animales , Acuicultura/métodos , Asia , Europa (Continente) , Abastecimiento de Alimentos/métodos , Agua Dulce , Geografía , Salud Global , Humanos , Modelos Teóricos , América del Norte , Alimentos Marinos/provisión & distribución , América del Sur
4.
Nature ; 597(7876): 360-365, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526707

RESUMEN

Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.


Asunto(s)
Acuicultura , Ecosistema , Monitoreo del Ambiente , Alimentos Marinos , Desarrollo Sostenible , Animales , Acuicultura/tendencias , Cambio Climático , Dieta , Ecología , Política Ambiental , Explotaciones Pesqueras , Abastecimiento de Alimentos/métodos , Gases de Efecto Invernadero , Humanos , Moluscos , Nitrógeno , Fósforo , Alimentos Marinos/provisión & distribución , Algas Marinas , Desarrollo Sostenible/tendencias
5.
Nature ; 598(7880): 315-320, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526720

RESUMEN

Despite contributing to healthy diets for billions of people, aquatic foods are often undervalued as a nutritional solution because their diversity is often reduced to the protein and energy value of a single food type ('seafood' or 'fish')1-4. Here we create a cohesive model that unites terrestrial foods with nearly 3,000 taxa of aquatic foods to understand the future impact of aquatic foods on human nutrition. We project two plausible futures to 2030: a baseline scenario with moderate growth in aquatic animal-source food (AASF) production, and a high-production scenario with a 15-million-tonne increased supply of AASFs over the business-as-usual scenario in 2030, driven largely by investment and innovation in aquaculture production. By comparing changes in AASF consumption between the scenarios, we elucidate geographic and demographic vulnerabilities and estimate health impacts from diet-related causes. Globally, we find that a high-production scenario will decrease AASF prices by 26% and increase their consumption, thereby reducing the consumption of red and processed meats that can lead to diet-related non-communicable diseases5,6 while also preventing approximately 166 million cases of inadequate micronutrient intake. This finding provides a broad evidentiary basis for policy makers and development stakeholders to capitalize on the potential of aquatic foods to reduce food and nutrition insecurity and tackle malnutrition in all its forms.


Asunto(s)
Abastecimiento de Alimentos , Internacionalidad , Alimentos Marinos/clasificación , Animales , Dieta Saludable , Femenino , Peces , Salud , Humanos , Masculino , Valor Nutritivo , Carne Roja , Alimentos Marinos/análisis , Poblaciones Vulnerables
7.
Fish Fish (Oxf) ; 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33362433

RESUMEN

The US seafood sector is susceptible to shocks, both because of the seasonal nature of many of its domestic fisheries and its global position as a top importer and exporter of seafood. However, many data sets that could inform science and policy during an emerging event do not exist or are only released months or years later. Here, we synthesize multiple data sources from across the seafood supply chain, including unconventional real-time data sets, to show the relative initial responses and indicators of recovery during the COVID-19 pandemic. We synthesized news articles from January to September 2020 that reported effects of COVID-19 on the US seafood sector, including processor closures, shortened fishing seasons and loss of revenue. Concerning production and distribution, we assessed past and present landings and trade data and found substantial declines in fresh seafood catches (-40%), imports (-37%) and exports (-43%) relative to the previous year, while frozen seafood products were generally less affected. Google search trends and seafood market foot traffic data suggest consumer demand for seafood from restaurants dropped by upwards of 70% during lockdowns, with recovery varying by state. However, these declines were partially offset by an increase (270%) in delivery and takeout service searches. Our synthesis of open-access data sets and media reports shows widespread, but heterogeneous, ramifications of COVID-19 across the seafood sector, implying that policymakers should focus support on states and sub-sectors most affected by the pandemic: fishery-dependent communities, processors, and fisheries and aquaculture that focus on fresh products.

8.
Proc Natl Acad Sci U S A ; 117(48): 30318-30323, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199620

RESUMEN

Over the past decade, seafood mislabeling has been increasingly documented, raising public concern over the identity, safety, and sustainability of seafood. Negative outcomes from seafood mislabeling are suspected to be substantial and pervasive as seafood is the world's most highly traded food commodity. Here we provide empirical systems-level evidence that enabling conditions exist for seafood mislabeling in the United States (US) to lead to negative impacts on marine populations and support consumption of products from poorly managed fisheries. Using trade, production, and mislabeling data, we determine that substituted products are more likely to be imported than the product listed on the label. We also estimate that about 60% of US mislabeled apparent consumption associated with the established pairs involves products that are exclusively wild caught. We use these wild-caught pairs to explore population and management consequences of mislabeling. We find that, compared to the product on the label, substituted products come from fisheries with less healthy stocks and greater impacts of fishing on other species. Additionally, substituted products are from fisheries with less effective management and with management policies less likely to mitigate impacts of fishing on habitats and ecosystems compared with the label product. While we provide systematic evidence of environmental impacts from food fraud, our results also highlight the current challenges with production, trade, and mislabeling data, which increase the uncertainty surrounding seafood mislabeling consequences. More integrated, holistic, and collaborative approaches are needed to understand mislabeling impacts and design interventions to minimize mislabeling.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Explotaciones Pesqueras , Etiquetado de Alimentos , Alimentos Marinos , Abastecimiento de Alimentos , Geografía , Estados Unidos
9.
Sci Total Environ ; 712: 136255, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050400

RESUMEN

Reducing food loss and waste (FLW) is widely recognized as an important lever for lowering the environmental impacts of food systems. The United Nations Sustainable Development Agenda includes a goal to reduce FLW by 50% by 2030. Given differences in resource inputs along the food supply chain (FSC), the environmental benefits of FLW reduction will vary by stage of the FSC. Here, we identify the points along the supply chain where a 50% FLW reduction could yield the largest potential environmental benefits, assuming that decreases in consumption propagate back up the supply chain to reduce production. We use an environmentally extended input-output (EEIO) model combined with data on rates of FLW to calculate the scale of the total environmental impacts of the U.S. food system resulting from lost or wasted food. We evaluate the maximum potential environmental benefit resulting from 50% FLW reduction at all possible combinations of six supply chain stages (agricultural production, food processing, distribution/retail, restaurant foodservice, institutional foodservice, and households). We find that FLW reduction efforts should target the foodservice (restaurant) sector, food processing sector, and household consumption. Halving FLW in the foodservice sector has the highest potential to reduce greenhouse gas output and energy use. Halving FLW in the food processing sector could reduce the most land use and eutrophication potential, and reducing household consumption waste could avert the most water consumption. In contrast, FLW reduction at the retail, institutional foodservice, and farm level averts less environmental impact. Our findings may help determine optimal investment in FLW reduction strategies.

11.
Front Nutr ; 6: 109, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428615

RESUMEN

The Madagascar Health and Environmental Research-Antongil (MAHERY-Antongil) study cohort was set up in September 2015 to assess the nutritional value of seafood for the coastal Malagasy population living along Antongil Bay in northeastern Madagascar. Over 28 months of surveillance, we aimed to understand the relationships among different marine resource governance models, local people's fish catch, the consumption of seafood, and nutritional status. In the Antongil Bay, fisheries governance takes three general forms: traditional management, marine national parks, and co-management. Traditional management involves little to no involvement by the national government or non-governmental organizations, and focuses on culturally accepted Malagasy community practices. Co-management and marine national parks involve management support from either an non-govermental organization (NGO) or the national government. Five communities of varying governance strategies were enrolled into the study including 225 households and 1031 individuals whose diets, resource acquisition strategies, fisheries and agricultural practices, and other social, demographic and economic indicators were measured over the span of 3 years. Clinical visits with each individual were conducted at two points during the study to measure disease and nutritional status. By analyzing differences in fish catch arising from variation in governance (in addition to intra-annual seasonal changes and minor inter-annual changes), the project will allow us to calculate the public health value of sustainable fisheries management approaches for local populations. There is hope that coastal zones that are managed sustainably can increase the productivity of fisheries, increasing the catch of seafood products for poor, undernourished populations.

13.
Environ Res Lett ; 12(2)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32818038

RESUMEN

Ensuring food security requires food production and distribution systems function throughout disruptions. Understanding the factors that contribute to the global food system's ability to respond and adapt to such disruptions (i.e. resilience) is critical for understanding the long-term sustainability of human populations. Variable impacts of production shocks on food supply between countries indicate a need for national-scale resilience indicators that can provide global comparisons. However, methods for tracking changes in resilience have had limited application to food systems. We developed an indicator-based analysis of food systems resilience for the years 1992-2011. Our approach is based on three dimensions of resilience: socio-economic access to food in terms of income of the poorest quintile relative to food prices, biophysical capacity to intensify or extensify food production, and the magnitude and diversity of current domestic food production. The socio-economic indicator has large variability, but with low values concentrated in Africa and Asia. The biophysical capacity indicator is highest in Africa and Eastern Europe, in part because of high potential for extensification of cropland and for yield gap closure in cultivated areas. However, the biophysical capacity indicator has declined globally in recent years. The production diversity indicator has increased slightly, with a relatively even geographic distribution. Few countries had exclusively high or low values for all indicators. Collectively, these results are the basis for global comparisons of resilience between nations, and provide necessary context for developing generalizations about the resilience in the global food system.

14.
Sci Total Environ ; 553: 120-127, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26906699

RESUMEN

The question of how to minimize monetary cost while meeting basic nutrient requirements (a subsistence diet) was posed by George Stigler in 1945. The problem, known as Stigler's diet problem, was famously solved using the simplex algorithm. Today, we are not only concerned with the monetary cost of food, but also the environmental cost. Efforts to quantify environmental impacts led to the development of footprint (FP) indicators. The environmental footprints of food production span multiple dimensions, including greenhouse gas emissions (carbon footprint), nitrogen release (nitrogen footprint), water use (blue and green water footprint) and land use (land footprint), and a diet minimizing one of these impacts could result in higher impacts in another dimension. In this study based on nutritional and population data for the United States, we identify diets that minimize each of these four footprints subject to nutrient constraints. We then calculate tradeoffs by taking the composition of each footprint's minimum diet and calculating the other three footprints. We find that diets for the minimized footprints tend to be similar for the four footprints, suggesting there are generally synergies, rather than tradeoffs, among low footprint diets. Plant-based food and seafood (fish and other aquatic foods) commonly appear in minimized diets and tend to most efficiently supply macronutrients and micronutrients, respectively. Livestock products rarely appear in minimized diets, suggesting these foods tend to be less efficient from an environmental perspective, even when nutrient content is considered. The results' emphasis on seafood is complicated by the environmental impacts of aquaculture versus capture fisheries, increasing in aquaculture, and shifting compositions of aquaculture feeds. While this analysis does not make specific diet recommendations, our approach demonstrates potential environmental synergies of plant- and seafood-based diets. As a result, this study provides a useful tool for decision-makers in linking human nutrition and environmental impacts.


Asunto(s)
Huella de Carbono , Conservación de los Recursos Naturales/economía , Dieta/estadística & datos numéricos , Acuicultura , Explotaciones Pesqueras , Humanos , Alimentos Marinos , Estados Unidos
15.
Ambio ; 45(3): 302-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26474766

RESUMEN

Rising human demand and climatic variability have created greater uncertainty regarding global food trade and its effects on the food security of nations. To reduce reliance on imported food, many countries have focused on increasing their domestic food production in recent years. With clear goals for the complete self-sufficiency of rice production, Sri Lanka provides an ideal case study for examining the projected growth in domestic rice supply, how this compares to future national demand, and what the associated impacts from water and fertilizer demands may be. Using national rice statistics and estimates of intensification, this study finds that improvements in rice production can feed 25.3 million Sri Lankans (compared to a projected population of 23.8 million people) by 2050. However, to achieve this growth, consumptive water use and nitrogen fertilizer application may need to increase by as much as 69 and 23 %, respectively. This assessment demonstrates that targets for maintaining self-sufficiency should better incorporate avenues for improving resource use efficiency.


Asunto(s)
Abastecimiento de Alimentos , Oryza , Agricultura , Fertilizantes , Humanos , Nitrógeno , Densidad de Población , Sri Lanka , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...