Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Más filtros

Base de datos
Tipo de estudio
Intervalo de año de publicación
Nature ; 597(7876): 360-365, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526707


Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.

Acuicultura , Ecosistema , Monitoreo del Ambiente , Alimentos Marinos , Desarrollo Sostenible , Animales , Acuicultura/tendencias , Cambio Climático , Dieta , Ecología , Política Ambiental , Explotaciones Pesqueras , Abastecimiento de Alimentos/métodos , Gases de Efecto Invernadero , Humanos , Moluscos , Nitrógeno , Fósforo , Alimentos Marinos/provisión & distribución , Algas Marinas , Desarrollo Sostenible/tendencias
PLoS One ; 10(3): e0122127, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25806798


Relative to terrestrial plants, and despite similarities in life history characteristics, the potential for corals to exhibit intra-reef local adaptation in the form of genetic differentiation along an environmental gradient has received little attention. The potential for natural selection to act on such small scales is likely increased by the ability of coral larval dispersal and settlement to be influenced by environmental cues. Here, we combine genetic, spatial, and environmental data for a single patch reef in Kane'ohe Bay, O'ahu, Hawai'i, USA in a landscape genetics framework to uncover environmental drivers of intra-reef genetic structuring. The genetic dataset consists of near-exhaustive sampling (n = 2352) of the coral, Pocillopora damicornis at our study site and six microsatellite genotypes. In addition, three environmental parameters - depth and two depth-independent temperature indices - were collected on a 4 m grid across 85 locations throughout the reef. We use ordinary kriging to spatially interpolate our environmental data and estimate the three environmental parameters for each colony. Partial Mantel tests indicate a significant correlation between genetic relatedness and depth while controlling for space. These results are also supported by multi-model inference. Furthermore, spatial Principle Component Analysis indicates a statistically significant genetic cline along a depth gradient. Binning the genetic dataset based on size-class revealed that the correlation between genetic relatedness and depth was significant for new recruits and increased for larger size classes, suggesting a possible role of larval habitat selection as well as selective mortality in structuring intra-reef genetic diversity. That both pre- and post-recruitment processes may be involved points to the adaptive role of larval habitat selection in increasing adult survival. The conservation importance of uncovering intra-reef patterns of genetic diversity is discussed.

Antozoos/genética , Animales , Ecosistema , Variación Genética , Genotipo , Repeticiones de Microsatélite/genética , Análisis de Componente Principal
J Hered ; 105(2): 226-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24381182


Hybridization can be an important evolutionary force by generating new species and influencing evolution of parental species in multiple ways, including introgression and the consequences of hybrid vigor. Determining the ecological processes underlying evolution in hybrid zones is difficult however because it requires examining changes in both genotypic frequencies over time and corresponding ecological information, data that are rarely collected together. Here, we describe genetic and ecological aspects of a hybrid zone between the Eastern Fence Lizard, Sceloporus undulatus, and the Florida Scrub Lizard, Sceloporus woodi, occurring over at least 23 generations. The hybrid zone, discovered greater than 35 years ago using morphological characters, originally consisted of nearly even proportions of parental species and hybrids. Now, using genetic markers (species-diagnostic mtDNA sites and 6 nDNA microsatellite loci across a total of n = 117 individuals), we confirm not only that hybridization occurred but also that subsequent backcrossing has resulted in highly introgressed hybrids, with many hybrids containing mitochondrial DNA from one species on a nuclear DNA background of the other. Ecological aspects explaining these shifts in genetic composition include female mate choice, changes in habitat associated with secondary succession, and, most strongly, a hierarchy of male territorial advantage-ecological mechanisms likely to be involved in the emergence and disappearance of many animal hybrid zones. Our results suggest that genetic assimilation is not a significant threat to either species and that rather transient hybrid zones such as this may serve to increase genetic diversity and are candidates for causing genetic discordance in phylogeographic analyses.

Agresión , Evolución Molecular , Hibridación Genética , Lagartos/genética , Preferencia en el Apareamiento Animal , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Ecosistema , Femenino , Frecuencia de los Genes , Sitios Genéticos , Marcadores Genéticos , Variación Genética , Genotipo , Lagartos/clasificación , Masculino , Repeticiones de Microsatélite , Filogeografía , Especificidad de la Especie
Mol Ecol ; 22(14): 3721-36, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23786173


Patterns of isolation by distance are uncommon in coral populations. Here, we depart from historical trends of large-scale, geographical genetic analyses by scaling down to a single patch reef in Kane'ohe Bay, Hawai'i, USA, and map and genotype all colonies of the coral, Pocillopora damicornis. Six polymorphic microsatellite loci were used to assess population genetic and clonal structure and to calculate individual colony pairwise relatedness values. Our results point to an inbred, highly clonal reef (between 53 and 116 clonal lineages of 2352 genotyped colonies) with a much skewed genet frequency distribution (over 70% of the reef was composed of just seven genotypes). Spatial autocorrelation analyses revealed that corals found close together on the reef were more genetically related than corals further apart. Spatial genetic structure disappears, however, as spatial scale increases and then becomes negative at the largest distances. Stratified, random sampling of three neighbouring reefs confirms that reefs are demographically open and inter-reef genetic structuring was not detected. Attributing process to pattern in corals is complicated by their mixed reproductive strategies. Separate autocorrelation analyses, however, show that the spatial distribution of both clones and nonclones contributes to spatial genetic structure. Overall, we demonstrate genetic structure on an intrareef scale and genetic panmixia on an inter-reef scale indicating that, for P. damicornis, the effect of small- and large-scale dispersal processes on genetic diversity are not the same. By starting from an interindividual, intrareef level before scaling up to an inter-reef level, this study demonstrates that isolation-by-distance patterns for the coral P. damicornis are limited to small scales and highlights the importance of investigating genetic patterns and ecological processes at multiple scales.

Antozoos/crecimiento & desarrollo , Repeticiones de Microsatélite/genética , Población/genética , Animales , Antozoos/genética , Ecosistema , Estructuras Genéticas , Variación Genética , Genotipo , Geografía , Reproducción/genética