Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Transbound Emerg Dis ; 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794070

RESUMEN

Rift Valley fever phlebovirus (RVFV) is an arthropod-borne virus that can cause severe disease in ruminants and humans. Epidemics occur mainly after heavy rainfall, which leads to a significant increase in the occurrence of RVFV transmitting mosquitoes. During inter-epidemic periods the virus is assumed to be maintained between mosquitoes, susceptible livestock and yet unknown wildlife. The widespread rodent Rattus rattus (black rat) has been suspected to be involved in RVFV maintenance. In order to elucidate its susceptibility and thus its possible role in the transmission cycle of the virus, an experimental infection study was performed. Black rats were subcutaneously infected with highly virulent RVFV strain 35/74 and sacrificed on day 3, 14 and 28 post infection. Additional black rats served as non-infected contact animals. The infected black rats showed high susceptibility to RVFV infection. Generation of RVFV neutralizing antibodies was found and the rats developed viremias lasting up to 17 days. Viral RNA was found in tissues until the last day of the experiment. However, neither a clinical manifestation nor virus-induced histopathological lesions were observed in any rat. These findings indicate the persistence of RVFV in black rats without affecting the animals. In contact animals, no evidence of horizontal RVFV transmission was found, although the co-housed infected rats showed oral, rectal and conjunctival RVFV shedding. Results of this study point to an involvement of black rats in the RVFV transmission cycle and further studies are needed to investigate their potential role in the maintenance of the virus.

2.
Vaccines (Basel) ; 9(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806789

RESUMEN

Compared to free antigens, antigens immobilized on scaffolds, such as nanoparticles, generally show improved immunogenicity. Conventionally, antigens are conjugated to scaffolds through genetic fusion or chemical conjugation, which may result in impaired assembly or heterogeneous binding and orientation of the antigens. By combining two emerging technologies-i.e., self-assembling multimeric protein scaffold particles (MPSPs) and bacterial superglue-these shortcomings can be overcome and antigens can be bound on particles in their native conformation. In the present work, we assessed whether this technology could improve the immunogenicity of a candidate subunit vaccine against the zoonotic Rift Valley fever virus (RVFV). For this, the head domain of glycoprotein Gn, a known target of neutralizing antibodies, was coupled on various MPSPs to further assess immunogenicity and efficacy in vivo. The results showed that the Gn head domain, when bound to the lumazine synthase-based MPSP, reduced mortality in a lethal mouse model and protected lambs, the most susceptible RVFV target animals, from viremia and clinical signs after immunization. Furthermore, the same subunit coupled to two other MPSPs (Geobacillus stearothermophilus E2 or a modified KDPG Aldolase) provided full protection in lambs as well.

3.
Transbound Emerg Dis ; 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33655706

RESUMEN

The emergence of West Nile virus (WNV) and Usutu virus (USUV) in Europe resulted in significant outbreaks leading to avifauna mortality and human infections. Both viruses have overlapping geographical, host and vector ranges, and are often co-circulating in Europe. In Germany, a nationwide bird surveillance network was established to monitor these zoonotic arthropod-borne viruses in migratory and resident birds. In this framework, co-infections with WNV and USUV were detected in six dead birds collected in 2018 and 2019. Genomic sequencing and phylogenetic analyses classified the detected WNV strains as lineage 2 and the USUV strains as lineages Africa 2 (n = 2), Africa 3 (n = 3) and Europe 2 (n = 1). Preliminary attempts to co-propagate both viruses in vitro failed. However, we successfully cultivated WNV from two animals. Further evidence for WNV-USUV co-infection was obtained by sampling live birds in four zoological gardens with confirmed WNV cases. Three snowy owls had high neutralizing antibody titres against both WNV and USUV, of which two were also positive for USUV-RNA. In conclusion, further reports of co-infections in animals as well as in humans are expected in the future, particularly in areas where both viruses are present in the vector population.

4.
Viruses ; 13(3)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652845

RESUMEN

Dugbe orthonairovirus (DUGV) is a tick-borne arbovirus within the order Bunyavirales. DUGV was first isolated in Nigeria, but virus isolations in ten further African countries indicate that DUGV is widespread throughout Africa. Humans can suffer from a mild febrile illness, hence, DUGV is classified as a biosafety level (BSL) 3 agent. In contrast, no disease has been described in animals, albeit serological evidence exists that ruminants are common hosts and may play an important role in the transmission cycle of this neglected arbovirus. In this study, young sheep and calves were experimentally inoculated with DUGV in order to determine their susceptibility and to study the course of infection. Moreover, potential antibody cross-reactivities in currently available diagnostic assays for Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) were assessed as DUGV is distantly related to CCHFV. Following subcutaneous inoculation, none of the animals developed clinical signs or viremia. However, all ruminants seroconverted, as demonstrated by two DUGV neutralization test formats (micro-virus neutralization test (mVNT), plaque reduction (PRNT)), by indirect immunofluorescence assays and in bovines by a newly developed DUGV recombinant N protein ELISA. Sera did not react in commercial CCHFV ELISAs, whereas cross-reactivities were observed by immunofluorescence and immunoblot assays.

5.
Viruses ; 13(3)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652882

RESUMEN

Arthropod-borne Batai virus (BATV) is an Orthobunyavirus widely distributed throughout European livestock and has, in the past, been linked to febrile diseases in humans. In Germany, BATV was found in mosquitoes and in one captive harbor seal, and antibodies were recently detected in various ruminant species. We have, therefore, conducted a follow-up study in ruminants from Saxony-Anhalt, the most affected region in Eastern Germany. A total of 325 blood samples from apparently healthy sheep, goats, and cattle were tested using a BATV-specific qRT-PCR and SNT. Even though viral RNA was not detected, the presence of antibodies was confirmed in the sera of all three species: sheep (16.5%), goats (18.3%), and cattle (41.4%). Sera were further analyzed by a glycoprotein Gc-based indirect ELISA to evaluate Gc-derived antibodies as a basis for a new serological test for BATV infections. Interestingly, the presence of neutralizing antibodies was not directly linked to the presence of BATV Gc antibodies. Overall, our results illustrate the high frequency of BATV infections in ruminants in Eastern Germany.

6.
PLoS Pathog ; 17(2): e1009276, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33600501

RESUMEN

Variant Creutzfeldt-Jakob disease (vCJD) is a human prion disease resulting from zoonotic transmission of bovine spongiform encephalopathy (BSE). Documented cases of vCJD transmission by blood transfusion necessitate on-going risk reduction measures to protect blood supplies, such as leucodepletion (removal of white blood cells, WBCs). This study set out to determine the risks of prion transmission by transfusion of labile blood components (red blood cells, platelets, plasma) commonly used in human medicine, and the effectiveness of leucodepletion in preventing infection, using BSE-infected sheep as a model. All components were capable of transmitting prion disease when donors were in the preclinical phase of infection, with the highest rates of infection in recipients of whole blood and buffy coat, and the lowest in recipients of plasma. Leucodepletion of components (<106 WBCs/unit) resulted in significantly lower transmission rates, but did not completely prevent transmission by any component. Donor PRNP genotype at codon 141, which is associated with variation in incubation period, also had a significant effect on transfusion transmission rates. A sensitive protein misfolding cyclic amplification (PMCA) assay, applied to longitudinal series of blood samples, identified infected sheep from 4 months post infection. However, in donor sheep (orally infected), the onset of detection of PrPSc in blood was much more variable, and generally later, compared to recipients (intravenous infection). This shows that the route and method of infection may profoundly affect the period during which an individual is infectious, and the test sensitivity required for reliable preclinical diagnosis, both of which have important implications for disease control. Our results emphasize that blood transfusion can be a highly efficient route of transmission for prion diseases. Given current uncertainties over the prevalence of asymptomatic vCJD carriers, this argues for the maintenance and improvement of current measures to reduce the risk of transmission by blood products.

7.
Transfusion ; 61(4): 1266-1277, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33605455

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is the leading cause of acute hepatitis throughout the world. Increasing blood component transfusion-associated HEV infections highlight the need for reliable virus inactivation procedures for plasma derivatives from pooled plasma donations. STUDY DESIGN AND METHODS: An animal infection study was conducted to evaluate the efficiency of HEV inactivation by pasteurization during the manufacturing process of the von Willebrand Factor/Factor VIII (VWF/FVIII) concentrate Haemate P/Humate-P (CSL Behring, Marburg, Germany). For this purpose, groups of pigs were inoculated with stabilized VWF/FVIII intermediate spiked with HEV-positive liver homogenate and exposed to increasing incubation times of 0, 3, 6, and 10 h at 60°C. Animals were evaluated for virus replication over 27 days and in a subsequent trial over 92 days. RESULTS: Virus replication was detected in animals up to the 6-h pasteurization group. In contrast, pasteurization for 10 h did not reveal virus detection when the observation period was 27 days. In an additional experiment using the 10-h pasteurized material, two individuals started virus excretion and seroconverted when the observation period was extended to 92 days. Based on the total infection rate (2 of 12) of the animals inoculated with the sample pasteurized for 10 h, a virus reduction factor of at least 4.7 log10 is calculated. CONCLUSION: This study demonstrates that pasteurization at 60°C for 10 h of an HEV-positive plasma derivative leads to the effective reduction of infectivity, resulting in a VWF/FVIII product with an appropriate margin of safety for HEV.

8.
J Hepatol ; 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33484776

RESUMEN

BACKGROUND & AIMS: Hepatitis E virus (HEV) infections are prevalent worldwide. Various viruses have been detected in the ejaculate and can outlast the duration of viremia, indicating replication beyond the blood-testis barrier. HEV replication in diverse organs, however, is still widely misunderstood. We aimed to determine the occurrence, features and morphology of HEV in the ejaculate. METHODS: Presence of HEV in testis was assessed in 12 experimentally HEV-genotype-3 infected pigs. We further tested ejaculate, urine, stool and blood from 3 chronically HEV-genotype-3 infected and 6 immunocompetent patients with acute HEV infection by HEV-PCR. Morphology and genomic characterization of HEV particles from various human compartments were determined by HEV-PCR, density gradient measurement, immune-electron microscopy and genomic sequencing. RESULTS: In 2 of the 3 chronically HEV-infected patients, we observed HEV-RNA (genotype-3c) in seminal plasma and semen with viral loads >2 logs higher than in the serum. Genomic sequencing showed significant differences between viral strains in the ejaculate compared to stool. Under ribavirin-treatment, HEV shedding in the ejaculate outlasted duration of viremia for >9 months. Density gradient measurement and immune-electron microscopy characterized (enveloped) HEV particles in the ejaculate as intact. CONCLUSIONS: The male reproductive system was shown to be a niche of HEV persistence in chronic HEV infection. Surprisingly, sequence analysis revealed distinct genetic HEV variants in the stool and serum, originating from the liver, compared to variants in the ejaculate originating from the male reproductive system. Enveloped HEV particles in the ejaculate did not morphologically differ from serum derived HEV particles.

9.
Ticks Tick Borne Dis ; 12(1): 101601, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176235

RESUMEN

Crimean-Congo haemorrhagic fever is a viral tick-borne zoonotic disease caused by a Nairovirus, Crimean-Congo haemorrhagic fever virus (CCHFV). The present survey aimed to determine the exposure of one-humped camels (Camelus dromedarius) from southern Tunisia to CCHFV. A total of 273 sera from extensively reared camels were collected from Tataouine district, Tunisia, and tested by CCHFV-specific enzyme linked immunosorbent assays. By combining the results of three serological tests, the overall seroprevalence of CCHFV was estimated as 89.7% (245/273). No viral RNA was detected from camel sera using quantitative real-time PCR (RT-qPCR). A total of 165 ticks were collected from camels and tested with RT-qPCR, and only one Hyalomma impeltatum tick was positive for virus RNA.

10.
Microorganisms ; 8(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291703

RESUMEN

Hazara orthonairovirus (HAZV) is a tick-borne arbovirus closely related to Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV). Whereas CCHFV is a biosafety level (BSL) 4 agent, HAZV is classified as BSL 2, as it is not known to cause any disease in humans. Belonging to the same serogroup as CCHFV, HAZV might act as a model which can provide a better understanding of this important zoonosis. Furthermore, the serological relatedness may cause diagnostic problems if antibodies against HAZV interfere with current CCHFV serological assays. Therefore, sheep and cattle-important natural hosts for CCHFV-were experimentally infected with HAZV to prove their susceptibility and evaluate potential antibody cross-reactivities. According to this study, neither sheep nor cattle are susceptible to experimental HAZV infections. Consequently, the HAZV infection in ruminants is clearly distinct from CCHFV infections. Sera of immunized animals weakly cross-reacted between HAZV and CCHFV in immunofluorescence and immunoblot assays, but not in commercial CCHFV ELISAs commonly used for field studies.

11.
Parasit Vectors ; 13(1): 625, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33380339

RESUMEN

BACKGROUND: Usutu virus (USUV) is a rapidly spreading zoonotic arbovirus (arthropod-borne virus) and a considerable threat to the global avifauna and in isolated cases to human health. It is maintained in an enzootic cycle involving ornithophilic mosquitoes as vectors and birds as reservoir hosts. Despite massive die-offs in wild bird populations and the detection of severe neurological symptoms in infected humans, little is known about which mosquito species are involved in the propagation of USUV. METHODS: In the present study, the vector competence of a German (i.e. "Central European") and a Serbian (i.e. "Southern European") Culex pipiens biotype molestus laboratory colony was experimentally evaluated. For comparative purposes, Culex torrentium, a frequent species in Northern Europe, and Aedes aegypti, a primarily tropical species, were also tested. Adult female mosquitoes were exposed to bovine blood spiked with USUV Africa 2 and subsequently incubated at 25 °C. After 2 to 3 weeks saliva was collected from each individual mosquito to assess the ability of a mosquito species to transmit USUV. RESULTS: Culex pipiens biotype molestus mosquitoes originating from Germany and the Republic of Serbia and Cx. torrentium mosquitoes from Germany proved competent for USUV, as indicated by harboring viable virus in their saliva 21 days post infection. By contrast, Ae. aegypti mosquitoes were relatively refractory to an USUV infection, exhibiting low infection rates and lacking virus in their saliva. CONCLUSIONS: Consistent with the high prevalences and abundances of Cx. pipiens biotype molestus and Cx. torrentium in Central and Northern Europe, these two species have most likely played a historic role in the spread, maintenance, and introduction of USUV into Germany. Identification of the key USUV vectors enables the establishment and implementation of rigorous entomological surveillance programs and the development of effective, evidence-based vector control interventions.

12.
Viruses ; 12(11)2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114178

RESUMEN

Rift Valley fever phlebovirus (RVFV) is an arthropod-borne zoonotic pathogen, which is endemic in Africa, causing large epidemics, characterized by severe diseases in ruminants but also in humans. As in vitro and field investigations proposed amphibians and reptiles to potentially play a role in the enzootic amplification of the virus, we experimentally infected African common toads and common agamas with two RVFV strains. Lymph or sera, as well as oral, cutaneous and anal swabs were collected from the challenged animals to investigate seroconversion, viremia and virus shedding. Furthermore, groups of animals were euthanized 3, 10 and 21 days post-infection (dpi) to examine viral loads in different tissues during the infection. Our data show for the first time that toads are refractory to RVFV infection, showing neither seroconversion, viremia, shedding nor tissue manifestation. In contrast, all agamas challenged with the RVFV strain ZH501 carried virus genomes in the spleens at 3 dpi, but the animals displayed neither viremia nor virus shedding. In conclusion, the results of this study indicate that amphibians are not susceptible and reptiles are only susceptible to a low extent to RVFV, indicating that both species play, if at all, rather a subordinate role in the RVF virus ecology.

13.
Emerg Infect Dis ; 26(12): 2982-2985, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33089771

RESUMEN

Raccoon dogs might have been intermediate hosts for severe acute respiratory syndrome-associated coronavirus in 2002-2004. We demonstrated susceptibility of raccoon dogs to severe acute respiratory syndrome coronavirus 2 infection and transmission to in-contact animals. Infected animals had no signs of illness. Virus replication and tissue lesions occurred in the nasal conchae.

14.
Vaccines (Basel) ; 8(3)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899581

RESUMEN

West Nile virus (WNV) is a mosquito-borne virus that originates from Africa and at present causes neurological disease in birds, horses, and humans all around the globe. As West Nile fever is an important zoonosis, the role of free-ranging domestic poultry as a source of infection for humans should be evaluated. This study examined the pathogenicity of an Italian WNV lineage 1 strain for domestic poultry (chickens, ducks, and geese) held in Germany. All three species were subcutaneously injected with WNV, and the most susceptible species was also inoculated via mosquito bite. All species developed various degrees of viremia, viral shedding (oropharyngeal and cloacal), virus accumulation, and pathomorphological lesions. Geese were most susceptible, displaying the highest viremia levels. The tested waterfowl, geese, and especially ducks proved to be ideal sentinel species for WNV due to their high antibody levels and relatively low blood viral loads. None of the three poultry species can function as a reservoir/amplifying host for WNV, as their viremia levels most likely do not suffice to infect feeding mosquitoes. Due to the recent appearance of WNV in Germany, future pathogenicity studies should also include local virus strains.

15.
Cells ; 9(9)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911832

RESUMEN

Endocytosis plays a particular role in the proteolytic activation of highly pathogenic henipaviruses Hendra (HeV) and Nipah virus (NiV) fusion (F) protein precursors. These proteins require endocytic uptake from the cell surface to be cleaved by cellular proteases within the endosomal compartment, followed by recycling to the plasma membrane for incorporation into budding virions or mediation of cell-cell fusion. This internalization largely depends on a tyrosine-based consensus motif for endocytosis present in the cytoplasmic tail of HeV and NiV F. Given the large number of tyrosine residues present in the F protein cytoplasmic domain of Cedar virus (CedV), a closely related but low pathogenic henipavirus, we aimed to investigate whether CedV F protein undergoes signal-mediated endocytosis from the cell surface controlled by tyrosine-based motifs present in its cytoplasmic tail and whether endocytosis is relevant for its biological activity. Therefore, tyrosine-based signals were mutated, and mutations were assessed for their effect on F cell surface expression, endocytosis, and biological activity. A membrane-proximal YXXΦ motif and a C-terminal di-tyrosine motif are of particular importance for cell surface expression and endocytosis rate. Furthermore, our data strongly indicate the pivotal role of endocytosis for the biological activity of the CedV F protein.

16.
J Gen Virol ; 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32589123

RESUMEN

While the presence of bovine spongiform encephalopathy (BSE) infectivity in the blood of clinically affected sheep has been proven by intraspecies blood-transfusion experiments, this question has remained open in the case of BSE-affected cattle. Although the absence of infectivity can be anticipated from the restriction of the agent to neuronal tissues in this species, evidence for this was still lacking. This particularly concerns the production and use of medicinal products and other applications containing bovine blood or preparations thereof. We therefore performed a blood-transfusion experiment from cattle in the clinical end stage of disease after experimental challenge with either classical (C-BSE) or atypical (H- and l-) BSE into calves at 4-6 months of age. The animals were kept in a free-ranging group for 10 years. Starting from 24 months post-transfusion, a thorough clinical examination was performed every 6 weeks in order to detect early symptoms of a BSE infection. Throughout the experiment, the clinical picture of all animals gave no indication of a BSE infection. Upon necropsy, the brainstem samples were analysed by BSE rapid test as well as by the highly sensitive Protein Misfolding Cyclic Amplification (PMCA), all with negative results. These results add resilient data to confirm the absence of BSE infectivity in the donor blood collected from C-, H- and l-BSE-affected cattle even in the final clinical phase of the disease. This finding has important implications for the risk assessment of bovine blood and blood products in the production of medicinal products and other preparations.

17.
Transbound Emerg Dis ; 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32536002

RESUMEN

To combat the COVID-19 pandemic, millions of PCR tests are performed worldwide. Any deviation of the diagnostic sensitivity and specificity will reduce the predictive values of the test. Here, we report the occurrence of contaminations of commercial primers/probe sets with the SARS-CoV-2 target sequence of the RT-qPCR as an example for pitfalls during PCR diagnostics affecting diagnostic specificity. In several purchased in-house primers/probe sets, quantification cycle values as low as 17 were measured for negative control samples. However, there were also primers/probe sets that displayed very low-level contaminations, which were detected only during thorough internal validation. Hence, it appears imperative to pre-test each batch of reagents extensively before use in routine diagnosis, to avoid false-positive results and low positive predictive value in low-prevalence situations. As such, contaminations may have happened more widely, and COVID-19 diagnostic results should be re-assessed retrospectively to validate the epidemiological basis for control measures.

18.
Transbound Emerg Dis ; 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32599659

RESUMEN

Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is the most important tick-transmitted arbovirus in Europe. It can cause severe illnesses in humans and in various animal species. The main mechanism for the spread of TBEV into new areas is considered to be the translocation of infected ticks. To find out whether ducks can function as a natural virus reservoir in addition to serving as passive transport vectors, we carried out an experimental TBEV challenge study to reveal their susceptibility and resulting pathogenesis. Nineteen ducks were inoculated subcutaneously with TBEV strain 'Neudoerfl' and monitored for 21 days. Blood, oropharyngeal and cloacal swabs were collected throughout the experiment and organ samples upon necropsy at the end of the study. All samples were tested for TBEV-RNA by real-time polymerase chain reaction. TBEV-specific antibodies were determined by virus neutralization test and ELISA. Organ samples were examined histopathologically and by immunohistochemistry. The inoculated ducks did not show any clinical symptoms. TBEV-specific RNA was detected in all brain samples as well as in a few blood and swab samples. Moreover, all challenged birds produced TBEV antibodies and showed a mild to severe acute to subacute necrotizing encephalitis. TBEV-specific antigen was detected in the brain of 14 ducks by immunohistochemistry. The short and low viremic phases, as well as the low virus load in tissues, suggest that ducks should not be considered as reservoir hosts. However, due to the high antibody levels, ducks can serve as sentinel species for the detection of natural TBEV foci.

19.
Viruses ; 12(5)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354202

RESUMEN

In 2018, West Nile virus (WNV) broke out for the first time in Germany, with continuation of the epidemic in 2019, involving birds, horses and humans. To identify vectors and characterize the virus, mosquitoes were collected in both years in zoological gardens and on a horse meadow immediately following the diagnosis of disease cases in birds and horses. Mosquitoes were identified and screened for WNV by qRT-PCR, with virus-positive samples being sequenced for the viral envelope protein gene. While no positive mosquitoes were found in 2018, seven mosquito pools tested positive for WNV in 2019 in the Tierpark (Wildlife Park) Berlin. The pools consisted of Cx. pipiens biotype pipiens (n = 5), and a mixture of Cx. p. biotype pipiens and Cx. p. biotype molestus (n = 2), or hybrids of these, and were collected between 13 August and 24 September 2019. The virus strain turned out to be nearly identical to two WNV strains isolated from birds diseased in 2018 in eastern Germany. The findings represent the first demonstration of WNV in mosquitoes in Germany and include the possibility of local overwintering of the virus.

20.
Viruses ; 12(5)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438619

RESUMEN

West Nile virus (WNV) is a widespread zoonotic arbovirus and a threat to public health in Germany since its first emergence in 2018. It has become of particular relevance in Germany in 2019 due to its rapid geographical spread and the detection of the first human clinical cases. The susceptibility of indigenous Culex pipiens (biotypes pipiens and molestus) for a German WNV lineage 2 strain was experimentally compared to that of Serbian Cx. pipiens biotype molestus and invasive German Aedes albopictus. All tested populations proved to be competent laboratory vectors of WNV. Culex pipiens biotype pipiens displayed the highest transmission efficiencies (40.0%-52.9%) at 25 °C. This biotype was also able to transmit WNV at 18 °C (transmission efficiencies of 4.4%-8.3%), proving that temperate climates in Central and Northern Europe may support WNV circulation. Furthermore, due to their feeding behaviors, Cx. pipiens biotype molestus and Ae. albopictus can act as "bridge vectors", leading to human WNV infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...