Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.470
Filtrar
1.
Opt Lett ; 49(7): 1774-1777, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560860

RESUMEN

An ultra-broadband TM-pass polarizer is designed, fabricated, and experimentally demonstrated based on subwavelength grating (SWG) metamaterials in a lithium niobate on an insulator (LNOI) platform. According to our simulation, the designed device is predicted to work at a 220 nm wavelength range from 1460 to 1680 nm, covering the S-, C-, L-, U-bands of optical fiber communication. By depositing and subsequently etching a silicon nitride thin film atop the LNOI chip, the SWG structures are formed successfully by using complementary metal-oxide semiconductor (CMOS)-compatible fabrication processes. The measured results show a high polarization extinction ratio larger than 20 dB and a relatively low insertion loss below 2.5 dB over a 130 nm wavelength range from 1500 to 1630 nm, mainly limited by the operation bandwidth of our laser source.

2.
Phys Rev Lett ; 132(11): 116701, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563939

RESUMEN

Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this Letter, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides. To the best of our knowledge, this is the first time that slow wave is combined with hybrid magnonics. Its unique properties promise great potentials for both fundamental research and practical applications, for instance, by deepening our understanding of the light-matter interaction in the slow wave regime and providing high-efficiency spin wave transducers. The device concept can be extended to other systems such as optomagnonics and magnomechanics, opening up new directions for hybrid magnonics.

3.
Ecotoxicol Environ Saf ; 276: 116283, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574647

RESUMEN

Equilibration of metal metabolism is critical for normal liver function. Most epidemiological studies have only concentrated on the influence of limited metals. However, the single and synergistic impact of multiple-metal exposures on abnormal liver function (ALF) are still unknown. A cross-sectional study involving 1493 Chinese adults residing in Shenzhen was conducted. Plasma concentrations of 13 metals, including essential metals (calcium, copper, cobalt, iron, magnesium, manganese, molybdenum, zinc, and selenium) and toxic metals (aluminum, cadmium, arsenic, and thallium) were detected by the inductively coupled plasma spectrometry (ICP-MS). ALF was ascertained as any observed abnormality from albumin, alanine transaminase, aspartate transaminase, γ-glutamyl transpeptidase, and direct bilirubin. Diverse statistical methods were used to evaluate the single and mixture effect of metals, as well as the dose-response relationships with ALF risk, respectively. Mediation analysis was conducted to evaluate the role of blood lipids in the relation of metal exposure with ALF. The average age of subjects was 59.7 years, and 56.7 % were females. Logistic regression and the least absolute shrinkage and selection operator (LASSO) penalized regression model consistently suggested that increased levels of arsenic, aluminum, manganese, and cadmium were related to elevated risk of ALF; while magnesium and zinc showed protective effects on ALF (all p-trend < 0.05). The grouped weighted quantile sum (GWQS) regression revealed that the WQS index of essential metals and toxic metals showed significantly negative or positive relationship with ALF, respectively. Aluminum, arsenic, cadmium, and manganese showed linear whilst magnesium and zinc showed non-linear dose-response relationships with ALF risk. Mediation analysis showed that LDL-c mediated 4.41 % and 14.74 % of the relationship of plasma cadmium and manganese with ALF, respectively. In summary, plasma aluminum, arsenic, manganese, cadmium, magnesium, and zinc related with ALF, and LDL-c might underlie the pathogenesis of ALF associated with cadmium and manganese exposure. This study may provide critical public health significances in liver injury prevention and scientific evidence for the establishment of environmental standard.

4.
Physiol Rep ; 12(7): e16000, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584117

RESUMEN

Few standardized tools are available for evaluation of disorders of consciousness (DOC). The potential of heart rate variability (HRV) during head-up tilt (HUT) test was investigated as a complementary evaluation tool. Twenty-one DOC patients and 21 healthy participants were enrolled in this study comparing clinical characteristics and HRV time- and frequency-domain outcomes and temporal changes during HUT test. During the 1st-5th min of the HUT, DOC group showed a significant increase and decrease in log low frequency (LF) (p = 0.045) and log normalized high frequency (nHF) (p = 0.02), respectively, compared to the supine position and had lower log normalized LF (nLF) (p = 0.004) and log ratio of low-to-high frequency (LF/HF) (p = 0.001) compared to healthy controls. As the HUT continued from the 6th to the 20th min, DOC group exhibited a significant increase in log LF/HF (16th-20th min) (p < 0.05), along with a decrease in log nHF (6th-10th and 16th-20th min) (p < 0.05) and maintained lower log LF, log nLF, and log LF/HF than controls (p < 0.05). 1st-10th min after returning to the supine position, DOC group demonstrated a significant decrease in log nHF (p < 0.01) and increases in log LF/HF (p < 0.01) and had lower log LF (p < 0.01) and log nLF (p < 0.05) compared to controls. In contrast, the control group exhibited a significant decrease in log nHF (p < 0.05) and increase in log LF/HF (p < 0.05) throughout the entire HUT test. Notably, no significant differences were observed when comparing time-domain outcomes reflecting parasympathetic nervous system between the two groups. HRV during HUT test indicated a delayed and attenuated autonomic response, particularly in the sympathetic nervous system, in DOC patients compared with healthy individuals.


Asunto(s)
Trastornos de la Conciencia , Sistema Nervioso Simpático , Humanos , Frecuencia Cardíaca/fisiología , Pruebas de Mesa Inclinada , Sistema Nervioso Autónomo/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38597955

RESUMEN

A nanomicrocapsule system was constructed through the polymerization of tannic acid (TA) and emulsifier OP-10 (OP-10), followed by the chelation of iron ions, to develop a safe and effective method for controlling Rhizoctonia solani in agriculture. The encapsulated active component is a rosin-based triazole derivative (RTD) previously synthesized by our research group (RTD@OP10-TA-Fe). The encapsulation efficiency of the nanomicrocapsules is 82.39%, with an effective compound loading capacity of 96.49%. Through the encapsulation of the RTD via nanomicrocapsules, we improved its water solubility, optimized its stability, and increased its adhesion to the leaf surface. Under acidic conditions (pH = 5.0), the release rate of nanomicrocapsules at 96 h is 96.31 ± 0.8%, which is 2.04 times higher than the release rate under normal conditions (pH = 7.0). Additionally, the results of in vitro and in vivo antifungal assays indicate that compared with the original compound, the nanomicrocapsules exhibit superior antifungal activity (EC50 values of RTD and RTD@OP10-TA-Fe are 1.237 and 0.860 mg/L, respectively). The results of field efficacy trials indicate that compared with RTD, RTD@OP10-TA-Fe exhibits a more prolonged period of effectiveness. Even after 3 weeks, the antifungal rate of RTD@OP10-TA-Fe remains at 40%, whereas RTD, owing to degradation, shows an antifungal rate of 11.11% during the same period. Furthermore, safety assessment results indicate that compared with the control, RTD@OP10-TA-Fe has almost no impact on the growth of rice seedlings and exhibits low toxicity to zebrafish. This study provides valuable insights into controlling R. solani and enhancing the compound performance.

6.
Stroke ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591228

RESUMEN

BACKGROUND: Stroke is one of the leading causes of death among children, yet evidence on stroke incidence and prognosis in this population is largely neglected worldwide. The aim of this study was to estimate the latest burden of childhood stroke, as well as trends, risk factors, and inequalities from 1990 to 2019, at the global, regional, and national levels. METHODS: The Global Burden of Disease 2019 study was utilized to evaluate the prevalence, incidence, years lived with disability, years of life lost (YLLs), and average annual percentage changes in stroke among populations aged 0 to 19 years from 1990 to 2019. RESULTS: The global age-standardized incidence of stroke increased (average annual percentage change, 0.15% [95% uncertainty interval, 0.09%-0.21%]), while YLLs decreased substantially (average annual percentage change, -3.33% [95% uncertainty interval, -3.38% to -3.28%]) among children and adolescents between 1990 and 2019. Ischemic stroke accounted for 70% of incident cases, and intracerebral hemorrhage accounted for 63% of YLLs. Children under 5 years of age had the highest incidence of ischemic stroke, while adolescents aged 15 to 19 years had the highest incidence of hemorrhagic stroke. In 2019, low-income and middle-income countries were responsible for 84% of incident cases and 93% of YLLs due to childhood stroke. High-sociodemographic index countries had a reduction in YLLs due to stroke that was more than twice as fast as that of low-income and middle-income. CONCLUSIONS: Globally, the burden of childhood stroke continues to increase, especially among females, children aged <5 years, and low-sociodemographic index countries, such as sub-Saharan Africa. The burden of childhood stroke is likely undergoing a significant transition from being fatal to causing disability. Global public health policies and the deployment of health resources need to respond rapidly and actively to this shift.

7.
Poult Sci ; 103(5): 103575, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38447311

RESUMEN

The cage-rearing model of the modern poultry industry makes the bones of birds, especially egg-laying birds, more vulnerable to fracture, which poses serious damage to the health of birds. Research confirms that genetic material plays an important role in regulating bone growth, development, and remodeling. However, the genetic architecture underlying bone traits is not well understood. The objectives of this study are to identify valuable genes and genetic markers through a genome-wide association study (GWAS) for breeding to improve the duck bone quality. First, we quantified the tibia and femur quality traits of 260 laying ducks. Based on GWAS, a total of 75 SNP loci significantly associated with bone quality traits were identified, and 67 potential candidate genes were annotated. According to gene function analysis, genes P4HA2, WNT3A, and BST1 et al may influence bone quality by regulating bone cell activity, calcium and phosphate metabolism, or bone collagen maturation and cross-linking. Meanwhile, combined with the transcriptome results, we found that HOXB cluster genes are also important in bone growth and development. Therefore, our findings were helpful in further understanding the genetic architecture of the duck bone quality and provided a worthy theoretical basis and technological support to improve duck bone quality by breeding.

8.
Poult Sci ; 103(5): 103543, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38447307

RESUMEN

Endogenous retroviruses (ERV) are viral genomes integrated into the host genome and can be stably inherited. Although ERV sequences have been reported in some avian species' genome, the duck endogenous retroviruses (DERV) genome has yet to be quantified. This study aimed to identify ERV sequences and characterize genes near ERVs in the duck genome by utilizing LTRhavest and LTRdigest tools to forecast the duck genome and analyze the distribution of ERV copies. The results revealed 1,607, 2,031, and 1,908 full-length ERV copies in the Pekin duck (ZJU1.0), Mallard (CAU_wild_1.0), and Shaoxing duck (CAU_laying_1.0) genomes, respectively, with average lengths of 7,046, 7,027, and 6,945 bp. ERVs are mainly distributed on the 1, 2, and sex chromosomes. Phylogenetic analysis demonstrated the presence of Betaretrovirus in 3 duck genomes, whereas Alpharetrovirus was exclusively identified in the Shaoxing duck genome. Through screening, 596, 315, and 343 genes adjacent to ERV were identified in 3 duck genomes, respectively, and their functions of ERV neighboring genes were predicted. Functional enrichment analysis of ERV-adjacent genes revealed enrichment for Focal adhesion, Calcium signaling pathway, and Adherens junction in 3 duck genomes. The overlapped genes were highly expressed in 8 tissues (brain, fat, heart, kidney, liver, lung, skin, and spleen) of 8-wk-old Mallard, revealing their important expression in different tissues. Our study provides a new perspective for understanding the quantity and function of DERVs, and may also provide important clues for regulating nearby genes and affecting the traits of organisms.

9.
Emerg Microbes Infect ; 13(1): 2324502, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38465692

RESUMEN

In this study, we reported the first long-term monitoring of SARS-CoV-2 in wastewater in Mainland China from November 2021 to October 2023. The city of Shijiazhuang was employed for this case study. We developed a triple reverse transcription droplet digital PCR (RT-ddPCR) method using triple primer-probes for simultaneous detection of the N1 gene, E gene, and Pepper mild mottle virus (PMMoV) to achieve accurate quantification of SARS-CoV-2 RNA in wastewater. Both the RT-ddPCR method and the commercial multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) method were implemented for the detection of SARS-CoV-2 in wastewater in Shijiazhuang City over a 24-month period. Results showed that SARS-CoV-2 was detected for the first time in the wastewater of Shijiazhuang City on 10 November 2022. The peak of COVID-19 cases occurred in the middle of December 2022, when the concentration of SARS-CoV-2 in the wastewater was highest. The trend of virus concentration increases and decreases forming a "long-tailed" shape in the COVID-19  outbreak and recession cycle. The results indicated that both multiplex RT-ddPCR and RT-qPCR are effective in detecting SARS-CoV-2 in wastewater, but RT-ddPCR is capable of detecting low concentrations of SARS-CoV-2 in wastewater which is more efficient. The SARS-CoV-2 abundance in wastewater is correlated to clinical data, outlining the public health utility of this work.HighlightsFirst long-term monitoring of SARS-CoV-2 in wastewater in Mainland ChinaCOVID-19 outbreak was tracked in Shijiazhuang City from outbreak to containmentWastewater was monitored simultaneously using RT-ddPCR and RT-qPCR methodsTriple primer-probe RT-ddPCR detects N1 and E genes of SARS-CoV-2 and PMMoV.


Asunto(s)
COVID-19 , SARS-CoV-2 , Tobamovirus , Humanos , SARS-CoV-2/genética , Aguas Residuales , COVID-19/diagnóstico , COVID-19/epidemiología , ARN Viral/genética , China/epidemiología , Reacción en Cadena de la Polimerasa Multiplex , Prueba de COVID-19
10.
Artículo en Inglés | MEDLINE | ID: mdl-38492140

RESUMEN

China has become one of the most serious countries suffering from biological invasions in the world. In the context of global climate change, invasive alien species (IAS) are likely to invade a wider area, posing greater ecological and economic threats in China. Western mosquitofish (Gambusia affinis), which is known as one of the 100 most invasive alien species, has distributed widely in southern China and is gradually spreading to the north, causing serious ecological damage and economic losses. However, its distribution in China is still unclear. Hence, there is an urgent need for a more convenient way to detect and monitor the distribution of G. affinis to put forward specific management. Therefore, we detected the distribution of G. affinis in China under current and future climate change by combing Maxent modeling prediction and eDNA verification, which is a more time-saving and reliable method to estimate the distribution of species. The Maxent modeling showed that G. affinis has a broad habitat suitability in China (especially in southern China) and would continue to spread in the future with ongoing climate change. However, eDNA monitoring showed that occurrences can already be detected in regions that Maxent still categorized as unsuitable. Besides temperature, precipitation and human influence were the most important environmental factors affecting the distribution of G. affinis in China. In addition, by environmental DNA analysis, we verified the presence of G. affinis predicted by Maxent in the Qinling Mountains where the presence of G. affinis had not been previously recorded.

11.
Acta Pharmacol Sin ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519646

RESUMEN

Parkin (PARK2) deficiency is frequently observed in various cancers and potentially promotes tumor progression. Here, we showed that Parkin expression is downregulated in liver cancer tissues, which correlates with poor patient survival. Parkin deficiency in liver cancer cells promotes migration and metastasis as well as changes in EMT and metastasis markers. A negative correlation exists between TMEFF1 and Parkin expression in liver cancer cells and tumor tissues. Parkin deficiency leads to upregulation of TMEFF1 which promotes migration and metastasis. TMEFF1 transcription is activated by Parkin-induced endogenous TGF-ß production and subsequent phosphorylation of Smad2/3 and its binding to TMEFF1 promotor. TGF-ß inhibitor and TMEFF1 knockdown can reverse shParkin-induced cell migration and changes of EMT markers. Parkin interacts with and promotes the ubiquitin-dependent degradation of HIF-1α/HIF-1ß and p53, which accounts for the suppression of TGF-ß production. Our data have revealed that Parkin deficiency in cancer leads to the activation of the TGF-ß/Smad2/3 pathway, resulting in the expression of TMEFF1 which promotes cell migration, EMT, and metastasis in liver cancer cells.

12.
Pest Manag Sci ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529554

RESUMEN

BACKGROUND: To further develop potential natural fungicides, two series of new acrylopimaric acid triazole derivatives were synthesized, and their antifungal activities were tested and evaluated. RESULTS: In vitro antifungal activity results indicated that Compound 5m exhibited significant inhibitory activity against Rhizoctonia solani with an EC50 value of 1.528 mg/L. Its antifungal effect was comparable to that of the commercially available fungicide fluconazole, epoxiconazole and propiconazole (EC50 value of 1.441, 0.815 and 1.173 mg/L). Subsequently, in vivo studies were conducted on Compound 5m, which revealed its significant protective and curative effects against R. solani. In addition, physiological and biochemical studies showed that Compound 5m could disrupt the morphology and ultrastructure of R. solani mycelium, increase cell membrane permeability, inhibit ergosterol synthesis, and enhance the activity of defense enzymes in rice plants. 3D-QSAR studies revealed that the molecular structure significantly influenced the binding of Compound 5m to the receptor, thereby enhancing its antifungal activity. CONCLUSION: Compound 5m exhibits excellent antifungal activity against R. solani, making it a promising candidate fungicide for the prevention and control of R. solani. This article is protected by copyright. All rights reserved.

13.
Small ; : e2312209, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530091

RESUMEN

Developing novel proton exchange membranes (PEMs) with low cost and superior performance to replace Nafion is of great significance. Polyoxometalate-doped sulfonated poly(aryl ether ketone sulfone) (SPAEKS) allows for the amalgamation of the advantages in each constituent, thereby achieving an optimized performance for the hybrid PEMs. Herein, the hybrid membranes by introducing 2MeIm-{Mo132} into SPAEKS are obtained. Excellent hydrophilic properties of 2MeIm-{Mo132} can help more water molecules be retained in the hybrid membrane, providing abundant carriers for proton transport and proton hopping sites to build successive hydrophilic channels, thus lowering the energy barrier, accelerating the proton migration, and significantly fostering the proton conductivity of hybrid membranes. Especially, SP-2MIMo132-5 exhibits an enhanced proton conductivity of 75 mS cm-1 at 80 °C, which is 82.9% higher than pristine SPAEKS membrane. Additionally, this membrane is suitable for application in proton exchange membrane fuel cells, and a maximum power density of 266.2 mW cm-2 can be achieved at 80 °C, which far exceeds that of pristine SPAEKS membrane (54.6 mW cm-2). This work demonstrates that polyoxometalate-based clusters can serve as excellent proton conduction sites, opening up the choice of proton conduction carriers in hybrid membrane design and providing a novel idea to manufacture high-performance PEMs.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38530339

RESUMEN

The baijiu fermentation environment hosts a variety of micro-organisms, some of which still remain uncultured and uncharacterized. In this study, the isolation, cultivation and characterization of three novel aerobic bacterial strains are described. The cells of strain REN20T were Gram-negative, strictly aerobic, motile and grew at 26-37 °C, at pH 6.0-9.0 and in the presence of 0-5.0   % (w/v) NaCl. The cells of strain REN29T were Gram-negative, strictly aerobic, motile and grew at 15-30 °C, at pH 6.0-9.0 and in the presence of 0-10.0   % (w/v) NaCl. The cells of strain REN33T were Gram-positive, strictly aerobic, motile and grew at 15-37 °C, at pH 5.0-10.0 and in the presence of 0-7.0   % (w/v) NaCl. The digital DNA-DNA hybridization and average nucleotide identity by orthology values between type strains in related genera and REN20T (20.3-36.8 % and 79.8-89.9  %), REN29T (20.3-36.8  % and 74.5-88.5  %) and REN33T (22.6-48.6  % and 75.8-84.2  %) were below the standard cut-off criteria for the delineation of bacterial species, respectively. Based on polyphasic taxonomy analysis, we propose three new species, Bosea beijingensis sp. nov. (=REN20T=GDMCC 1.2894T=JCM 35118T), Telluria beijingensis sp. nov. (=REN29T=GDMCC 1.2896T=JCM 35119T) and Agrococcus beijingensis sp. nov. (=REN33T=GDMCC 1.2898T=JCM 35164T), which were recovered during cultivation and isolation from baijiu mash.


Asunto(s)
Actinomycetales , Bradyrhizobiaceae , Oxalobacteraceae , Cloruro de Sodio , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Bacterias Aerobias
15.
Dev Dyn ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516819

RESUMEN

The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.

16.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456625

RESUMEN

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Asunto(s)
Brassica napus , Brassica napus/genética , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Genómica , Fenotipo
17.
Front Immunol ; 15: 1266850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426102

RESUMEN

The advent of immune-checkpoint inhibitors (ICIs) has revolutionized the treatment of malignant solid tumors in the last decade, producing lasting benefits in a subset of patients. However, unattended excessive immune responses may lead to immune-related adverse events (irAEs). IrAEs can manifest in different organs within the body, with pulmonary toxicity commonly referred to as immune checkpoint inhibitor-related pneumonitis (CIP). The CIP incidence remains high and is anticipated to rise further as the therapeutic indications for ICIs expand to encompass a wider range of malignancies. The diagnosis and treatment of CIP is difficult due to the large individual differences in its pathogenesis and severity, and severe CIP often leads to a poor prognosis for patients. This review summarizes the current state of clinical research on the incidence, risk factors, predictive biomarkers, diagnosis, and treatment for CIP, and we address future directions for the prevention and accurate prediction of CIP.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neumonía , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neumonía/inducido químicamente , Neumonía/diagnóstico , Factores de Riesgo
18.
Nanoscale ; 16(13): 6662-6668, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38487896

RESUMEN

Developing high-performance bifunctional electrocatalysts towards the hydrogen evolution reaction/oxygen evolution reaction (HER/OER) holds great significance for efficient water splitting. This work presents a two-stage metal-organic thermal evaporation strategy for the fabrication of Ru-based catalysts (Ru/NF) through growing ruthenium (Ru)/ruthenium dioxide (RuO2) nanoparticles (NPs) on nickel foam (NF). The optimal Ru/NF shows remarkable performance in both the HER (26.1 mV) and the OER (235.4 mV) at 10 mA cm-2 in an alkaline medium. The superior OER performance can be attributed to the synergistic interaction between Ru and RuO2, facilitating fast alkaline water splitting. Density functional theory studies reveal that the resulting Ru/RuO2 with the (110) crystal surface reinforces the adsorption of oxygen on RuO2, while metallic Ru improves water dissociation in alkaline electrolytes. Besides, Ru/NF requires only 1.50 V at 10 mA cm-2 for overall water splitting, surpassing 20 wt% Pt/C/NF||RuO2/NF. This work demonstrates the promising potential of a thermal evaporation approach for designing stable Ru-based nanomaterials loaded onto conductive substrates for high performance overall water splitting.

19.
Sci Total Environ ; 926: 171513, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38460695

RESUMEN

Drinking water treatment sludge (DWTS) is a by-product of water treatment, and it is difficult to recycle to high value and poses potential environmental risks. Recycling DWTS into cement-based materials is an effective measure to achieve its high-volume utilization and reduce its environmental load. DWTS is rich in silica-alumina phases and has potential pozzolanic activity after drying, grinding and calcination, giving it similar properties to traditional supplementary cementitious materials. Adjusting the sludge production process and coagulant type will change its physical and chemical properties. Adding a small amount of DWTS can generate additional hydration products and refine the pore structure of the cement sample, thus improving the mechanical properties and durability of the sample. However, adding high-volume DWTS to concrete causes microstructural deterioration, but it is feasible to use high-volume DWTS to produce artificial aggregates, lightweight concrete, and sintered bricks. Meanwhile, calcined DWTS has similar compositions to clay, which makes it a potential raw material for cement clinker production. Cement-based materials can effectively solidify heavy metal ions in DWTS, and alkali-activated binders, magnesium-based cement, and carbon curing technology can further reduce the risk of heavy metal leaching. This review provides support for the high-value utilization of DWTS in cement-based materials and the reduction of its potential environmental risks.

20.
Sci Total Environ ; 925: 171764, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494033

RESUMEN

Nowadays incineration technology has become the most mainstream way for the disposal of municipal wastes. Short chain chlorinated paraffins (SCCPs) and medium chain chlorinated paraffins (MCCPs) are currently classified as new persistent organic pollutants (POPs) and candidate POPs under the Stockholm Convention, respectively. However, the occurrence and contamination characteristics of these main hazardous byproducts (e.g., leachate, fly ash, and bottom ash) from municipal solid waste incineration (MSWI) plants have remained unknown. This study focused on the SCCPs and MCCPs (defined as CPs) contamination and their annual emissions from leachate, fly ash, and bottom ash among three typical MSWI plants in Shenzhen, South China. Compared to the dissolved phase of the leachate, higher concentrations of CPs were detected in the adsorbed phase. The total concentrations of CPs ranged from lower method detection limits (1 in leachate (i.e., adsorbed phase) and bottom ash, while the opposite results were found in fly ash. The dominant SCCP congener groups were C10Cl6-7 in leachate and fly ash, and C13Cl6-7 in bottom ash. The dominant MCCP congener groups were C14Cl7-8 in leachate, fly ash and bottom ash samples. Principal component analysis (PCA) revealed the dominant CPs in fly ash were obviously different from those in leachate and bottom ash. Estimated total annual emissions of CPs from the three main hazardous byproducts generated from typical MSWI plants were estimated between 66.2 and 7510 kg/y and bottom ash contributed the most to the CP emissions. Overall, this study is the first report on CP contamination in hazardous byproducts from MSWI plants, and can provide basic data support for CP contamination control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...