Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 29(3): 4504-4522, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771027

RESUMEN

We developed a fast and accurate polynomial based atmospheric correction (POLYAC) algorithm for hyperspectral radiometric measurements, which parameterizes the atmospheric path radiances using aerosol properties retrieved from co-located multi-wavelength multi-angle polarimeter (MAP) measurements. This algorithm has been applied to co-located spectrometer for planetary exploration (SPEX) airborne and research scanning polarimeter (RSP) measurements, where SPEX airborne was used as a proxy of hyperspectral radiometers, and RSP as the MAP. The hyperspectral remote sensing reflectance obtained from POLYAC is accurate when compared to Aerosol Robotic Network (AERONET), and Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. POLYAC provides a robust alternative atmospheric correction algorithm for hyperspectral or multi-spectral radiometric measurements for scenes involving coastal oceans and/or absorbing aerosols, where traditional atmospheric correction algorithms are less reliable.

2.
Nat Commun ; 10(1): 5405, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776336

RESUMEN

Anthropogenic aerosol emissions lead to an increase in the amount of cloud condensation nuclei and consequently an increase in cloud droplet number concentration and cloud albedo. The corresponding negative radiative forcing due to aerosol cloud interactions (RF[Formula: see text]) is one of the most uncertain radiative forcing terms as reported in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Here we show that previous observation-based studies underestimate aerosol-cloud interactions because they used measurements of aerosol optical properties that are not directly related to cloud formation and are hampered by measurement uncertainties. We have overcome this problem by the use of new polarimetric satellite retrievals of the relevant aerosol properties (aerosol number, size, shape). The resulting estimate of RF[Formula: see text] = -1.14 Wm[Formula: see text] (range between -0.84 and -1.72 Wm[Formula: see text]) is more than a factor 2 stronger than the IPCC estimate that includes also other aerosol induced changes in cloud properties.

3.
Appl Opt ; 58(21): 5695-5719, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31503878

RESUMEN

To improve our understanding of the complex role of aerosols in the climate system and on air quality, measurements are needed of optical and microphysical aerosol. From many studies, it has become evident that a satellite-based multiangle, multiwavelength polarimeter will be essential to provide such measurements. Here, high accuracy (∼0.003) on the degree of linear polarization (DoLP) measurements is important to retrieve aerosol properties with an accuracy needed to advance our understanding of the aerosol effect on climate. SPEX airborne, a multiangle hyperspectral polarimeter, has been developed for observing and characterizing aerosols from NASA's high-altitude research aircraft ER-2. It delivers measurements of radiance and DoLP at visual wavelengths with a spectral resolution of 3 and 7-30 nm, respectively, for radiance and polarization, at nine fixed equidistant viewing angles from -56° to +56° oriented along the ground track, and a swath of 7° oriented across-track. SPEX airborne uses spectral polarization modulation to determine the state of linear polarization of scattered sunlight. This technique has been developed in the Netherlands and has been demonstrated with ground-based instruments. SPEX airborne serves as a demonstrator for a family of space-based SPEX instruments that have the ability to measure and characterize atmospheric aerosol by multiangle hyperspectral polarimetric imaging remotely from a satellite platform. SPEX airborne was calibrated radiometrically and polarimetrically using Jet Propulsion Laboratory (JPL) facilities including the Polarization Stage Generator-2 (PSG-2), which is designed for polarimetric calibration and validation of the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Using the PSG-2, the accuracy of the SPEX airborne DoLP measurements in the laboratory setup is found to be 0.002-0.004. Radiometric calibration is realized with an estimated accuracy of 4%. In 2017, SPEX airborne took part in the "Aerosol Characterization from Polarimeters and Lidar" campaign on the ER-2 that included four polarimeters and two lidars. Polarization measurements of SPEX airborne and the coflying Research Scanning Polarimeter (RSP), recorded during the campaign, were compared and display root-mean-square (RMS) differences ranging from 0.004 (at 555 nm) up to 0.02 (at 410 nm). For radiance measurements, excellent agreement between SPEX airborne and RSP is obtained with an RMS difference of ∼4%. The lab- and flight-performance values for polarization are similar to those recently published for AirMSPI, where also an intercomparison with RSP was made using data from field campaigns in 2013. The intercomparison of radiometric and polarimetric data both display negligible bias. The in-flight comparison results provide verification of SPEX airborne's capability to deliver high-quality data.

4.
Nat Commun ; 10(1): 303, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696820

RESUMEN

Anthropogenic methane emissions from China are likely greater than in any other country in the world. The largest fraction of China's anthropogenic emissions is attributable to coal mining, but these emissions may be changing; China enacted a suite of regulations for coal mine methane (CMM) drainage and utilization that came into full effect in 2010. Here, we use methane observations from the GOSAT satellite to evaluate recent trends in total anthropogenic and natural emissions from Asia with a particular focus on China. We find that emissions from China rose by 1.1 ± 0.4 Tg CH4 yr-1 from 2010 to 2015, culminating in total anthropogenic and natural emissions of 61.5 ± 2.7 Tg CH4 in 2015. The observed trend is consistent with pre-2010 trends and is largely attributable to coal mining. These results indicate that China's CMM regulations have had no discernible impact on the continued increase in Chinese methane emissions.

5.
Appl Opt ; 48(18): 3322-36, 2009 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-19543338

RESUMEN

Retrievals of atmospheric carbon dioxide (CO2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO(2) errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol.

6.
Appl Opt ; 46(16): 3332-44, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17514291

RESUMEN

We investigate the capabilities of different instrument concepts for the retrieval of aerosol properties over land. It was found that, if the surface reflection properties are unknown, only multiple-viewing-angle measurements of both intensity and polarization are able to provide the relevant aerosol parameters with sufficient accuracy for climate research. Furthermore, retrieval errors are only little affected when the number of viewing angles is increased at the cost of the number of spectral sampling points and vice versa. This indicates that there is a certain amount of freedom for the instrument design of dedicated aerosol instruments. The final choice on the trade-off between the spectral sampling and the number of viewing angles should be made taking other factors into account, such as instrument complexity and the ability to obtain global coverage.

7.
Appl Opt ; 46(2): 243-52, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17268571

RESUMEN

We present what we believe to be a novel approach to simulating the spectral fine structure (<1 nm) in measurements of spectrometers such as the Global Ozone Monitoring Experiment (GOME). GOME measures the Earth's radiance spectra and daily solar irradiance spectra from which a reflectivity spectrum is commonly extracted. The high-frequency structures contained in such a spectrum are, apart from atmospheric absorption, caused by Raman scattering and by a shift between the solar irradiance and the Earth's radiance spectrum. Normally, an a priori high-resolution solar spectrum is used to simulate these structures. We present an alternative method in which all the required information on the solar spectrum is retrieved from the GOME measurements. We investigate two approaches for the spectral range of 390-400 nm. First, a solar spectrum is reconstructed on a fine spectral grid from the GOME solar measurement. This approach leads to undersampling errors of up to 0.5% in the modeling of the Earth's radiance spectra. Second, a combination of the solar measurement and one of the Earth's radiance measurement is used to retrieve a solar spectrum. This approach effectively removes the undersampling error and results in residuals close to the GOME measurement noise of 0.1%.

8.
Appl Opt ; 45(23): 5993-6006, 2006 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16926888

RESUMEN

Accurate radiative transfer calculations in cloudy atmospheres are generally time consuming, limiting their practical use in satellite remote sensing applications. We present a model to efficiently calculate the radiative transfer of polarized light in atmospheres that contain homogeneous cloud layers. This model combines the Gauss-Seidel method, which is efficient for inhomogeneous cloudless atmospheres, with the doubling method, which is efficient for homogeneous cloud layers. Additionally to reduce the computational effort for radiative transfer calculations in absorption bands, the cloud reflection and transmission matrices are interpolated over the absorption and scattering optical thicknesses within the cloud layer. We demonstrate that the proposed radiative transfer model in combination with this interpolation technique is efficient for the simulation of satellite measurements for inhomogeneous atmospheres containing one homogeneous cloud layer. For example, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) measurements in the oxygen A band (758-773 nm) and the Hartley-Huggins ozone band (295-335 nm) with a spectral resolution of 0.4 nm can be simulated for these atmospheres within 1 min on a 2.8 GHz PC with an accuracy better than 0.1%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...