Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Microbiol ; 12: 666929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093485

RESUMEN

Verrucomicrobial methanotrophs are a group of aerobic bacteria isolated from volcanic environments. They are acidophiles, characterized by the presence of a particulate methane monooxygenase (pMMO) and a XoxF-type methanol dehydrogenase (MDH). Metagenomic analysis of DNA extracted from the soil of Favara Grande, a geothermal area on Pantelleria Island, Italy, revealed the presence of two verrucomicrobial Metagenome Assembled Genomes (MAGs). One of these MAGs did not phylogenetically classify within any existing genus. After extensive analysis of the MAG, we propose the name of "Candidatus Methylacidithermus pantelleriae" PQ17 gen. nov. sp. nov. The MAG consisted of 2,466,655 bp, 71 contigs and 3,127 predicted coding sequences. Completeness was found at 98.6% and contamination at 1.3%. Genes encoding the pMMO and XoxF-MDH were identified. Inorganic carbon fixation might use the Calvin-Benson-Bassham cycle since all genes were identified. The serine and ribulose monophosphate pathways were incomplete. The detoxification of formaldehyde could follow the tetrahydrofolate pathway. Furthermore, "Ca. Methylacidithermus pantelleriae" might be capable of nitric oxide reduction but genes for dissimilatory nitrate reduction and nitrogen fixation were not identified. Unlike other verrucomicrobial methanotrophs, genes encoding for enzymes involved in hydrogen oxidation could not be found. In conclusion, the discovery of this new MAG expands the diversity and metabolism of verrucomicrobial methanotrophs.

2.
Front Microbiol ; 12: 637762, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643272

RESUMEN

The Favara Grande is a geothermal area located on Pantelleria Island, Italy. The area is characterized high temperatures in the top layer of the soil (60°C), low pH (3-5) and hydrothermal gas emissions mainly composed of carbon dioxide (CO2), methane (CH4), and hydrogen (H2). These geothermal features may provide a suitable niche for the growth of chemolithotrophic thermoacidophiles, including the lanthanide-dependent methanotrophs of the phylum Verrucomicrobia. In this study, we started enrichment cultures inoculated with soil of the Favara Grande at 50 and 60°C with CH4 as energy source and medium containing sufficient lanthanides at pH 3 and 5. From these cultures, a verrucomicrobial methanotroph could be isolated via serial dilution and floating filters techniques. The genome of strain AP8 was sequenced and based on phylogenetic analysis we propose to name this new species Methylacidimicrobium thermophilum AP8. The transcriptome data at µmax (0.051 ± 0.001 h-1, doubling time ~14 h) of the new strain showed a high expression of the pmoCAB2 operon encoding the membrane-bound methane monooxygenase and of the gene xoxF1, encoding the lanthanide-dependent methanol dehydrogenase. A second pmoCAB operon and xoxF2 gene were not expressed. The physiology of strain AP8 was further investigated and revealed an optimal growth in a pH range of 3-5 at 50°C, representing the first thermophilic strain of the genus Methylacidimicrobium. Moreover, strain AP8 had a KS(app) for methane of 8 ± 1 µM. Beside methane, a type 1b [NiFe] hydrogenase enabled hydrogen oxidation at oxygen concentrations up to 1%. Taken together, our results expand the knowledge on the characteristics and adaptations of verrucomicrobial methanotrophs in hydrothermal environments and add a new thermophilic strain to the genus Methylacidimicrobium.

3.
Antonie Van Leeuwenhoek ; 114(3): 313-324, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33566237

RESUMEN

The genus Methylobacter is considered an important and often dominant group of aerobic methane-oxidizing bacteria in many oxic ecosystems, where members of this genus contribute to the reduction of CH4 emissions. Metagenomic studies of the upper oxic layers of geothermal soils of the Favara Grande, Pantelleria, Italy, revealed the presence of various methane-oxidizing bacteria, and resulted in a near complete metagenome assembled genome (MAG) of an aerobic methanotroph, which was classified as a Methylobacter species. In this study, the Methylobacter sp. B2 MAG was used to investigate its metabolic potential and phylogenetic affiliation. The MAG has a size of 4,086,539 bp, consists of 134 contigs and 3955 genes were found, of which 3902 were protein coding genes. All genes for CH4 oxidation to CO2 were detected, including pmoCAB encoding particulate methane monooxygenase (pMMO) and xoxF encoding a methanol dehydrogenase. No gene encoding a formaldehyde dehydrogenase was present and the formaldehyde to formate conversion follows the tetrahydromethanopterin (H4MPT) pathway. "Ca. Methylobacter favarea" B2 uses the Ribulose-Mono-Phosphate (RuMP) pathway for carbon fixation. Analysis of the MAG indicates that Na+/H+ antiporters and the urease system might be important in the maintenance of pH homeostasis of this strain to cope with acidic conditions. So far, thermoacidophilic Methylobacter species have not been isolated, however this study indicates that members of the genus Methylobacter can be found in distinct ecosystems and their presence is not restricted to freshwater or marine sediments.


Asunto(s)
Methylococcaceae , Suelo , ADN Bacteriano , Ecosistema , Metano , Methylococcaceae/genética , Filogenia , ARN Ribosómico 16S/genética
4.
mSystems ; 5(6)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144309

RESUMEN

Volcanic and geothermal environments are characterized by low pH, high temperatures, and gas emissions consisting of mainly CO2 and varied CH4, H2S, and H2 contents which allow the formation of chemolithoautotrophic microbial communities. To determine the link between the emitted gases and the microbial community composition, geochemical and metagenomic analysis were performed. Soil samples of the geothermic region Favara Grande (Pantelleria, Italy) were taken at various depths (1 to 50 cm). Analysis of the gas composition revealed that CH4 and H2 have the potential to serve as the driving forces for the microbial community. Our metagenomic analysis revealed a high relative abundance of Bacteria in the top layer (1 to 10 cm), but the relative abundance of Archaea increased with depth from 32% to 70%. In particular, a putative hydrogenotrophic methanogenic archaeon, related to Methanocella conradii, appeared to have a high relative abundance (63%) in deeper layers. A variety of [NiFe]-hydrogenase genes were detected, showing that H2 was an important electron donor for microaerobic microorganisms in the upper layers. Furthermore, the bacterial population included verrucomicrobial and proteobacterial methanotrophs, the former showing an up to 7.8 times higher relative abundance. Analysis of the metabolic potential of this microbial community showed a clear capacity to oxidize CH4 aerobically, as several genes for distinct particulate methane monooxygenases and lanthanide-dependent methanol dehydrogenases (XoxF-type) were retrieved. Analysis of the CO2 fixation pathways showed the presence of the Calvin-Benson-Bassham cycle, the Wood-Ljungdahl pathway, and the (reverse) tricarboxylic acid (TCA) cycle, the latter being the most represented carbon fixation pathway. This study indicates that the methane emissions in the Favara Grande might be a combination of geothermal activity and biological processes and further provides insights into the diversity of the microbial population thriving on CH4 and H2 IMPORTANCE The Favara Grande nature reserve on the volcanic island of Pantelleria (Italy) is known for its geothermal gas emissions and high soil temperatures. These volcanic soil ecosystems represent "hot spots" of greenhouse gas emissions. The unique community might be shaped by the hostile conditions in the ecosystem, and it is involved in the cycling of elements such as carbon, hydrogen, sulfur, and nitrogen. Our metagenome study revealed that most of the microorganisms in this extreme environment are only distantly related to cultivated bacteria. The results obtained profoundly increased the understanding of these natural hot spots of greenhouse gas production/degradation and will help to enrich and isolate the microbial key players. After isolation, it will become possible to unravel the molecular mechanisms by which they adapt to extreme (thermo/acidophilic) conditions, and this may lead to new green enzymatic catalysts and technologies for industry.

5.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32631865

RESUMEN

Industrial methanol production converts methane from natural gas into methanol through a multistep chemical process. Biological methane-to-methanol conversion under moderate conditions and using biogas would be more environmentally friendly. Methanotrophs, bacteria that use methane as an energy source, convert methane into methanol in a single step catalyzed by the enzyme methane monooxygenase, but inhibition of methanol dehydrogenase, which catalyzes the subsequent conversion of methanol into formaldehyde, is a major challenge. In this study, we used the thermoacidophilic methanotroph "Methylacidiphilum fumariolicum" SolV for biological methanol production. This bacterium possesses a XoxF-type methanol dehydrogenase that is dependent on rare earth elements for activity. By using a cultivation medium nearly devoid of lanthanides, we reduced methanol dehydrogenase activity and obtained a continuous methanol-producing microbial culture. The methanol production rate and conversion efficiency were growth-rate dependent. A maximal conversion efficiency of 63% mol methanol produced per mol methane consumed was obtained at a relatively high growth rate, with a methanol production rate of 0.88 mmol/g (dry weight)/h. This study demonstrates that methanotrophs can be used for continuous methanol production. Full-scale application will require additional increases in the titer, production rate, and efficiency, which can be achieved by further decreasing the lanthanide concentration through the use of increased biomass concentrations and novel reactor designs to supply sufficient gases, including methane, oxygen, and hydrogen.IMPORTANCE The production of methanol, an important chemical, is completely dependent on natural gas. The current multistep chemical process uses high temperature and pressure to convert methane in natural gas to methanol. In this study, we used the methanotroph "Methylacidiphilum fumariolicum" SolV to achieve continuous methanol production from methane as the substrate. The production rate was highly dependent on the growth rate of this microorganism, and high conversion efficiencies were obtained. Using microorganisms for the production of methanol might enable the use of more sustainable sources of methane, such as biogas, rather than natural gas.


Asunto(s)
Metano/metabolismo , Metanol/metabolismo , Verrucomicrobia/metabolismo , Verrucomicrobia/crecimiento & desarrollo
6.
Front Microbiol ; 11: 951, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508778

RESUMEN

Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55°C and pH 5.0. The highest growth rate is obtained using H2 as energy source (µmax 0.19 ± 0.02 h-1, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 ± 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions.

7.
ISME J ; 14(5): 1223-1232, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32042101

RESUMEN

The trace amounts (0.53 ppmv) of atmospheric hydrogen gas (H2) can be utilized by microorganisms to persist during dormancy. This process is catalyzed by certain Actinobacteria, Acidobacteria, and Chloroflexi, and is estimated to convert 75 × 1012 g H2 annually, which is half of the total atmospheric H2. This rapid atmospheric H2 turnover is hypothesized to be catalyzed by high-affinity [NiFe] hydrogenases. However, apparent high-affinity H2 oxidation has only been shown in whole cells, rather than for the purified enzyme. Here, we show that the membrane-associated hydrogenase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV possesses a high apparent affinity (Km(app) = 140 nM) for H2 and that methanotrophs can oxidize subatmospheric H2. Our findings add to the evidence that the group 1h [NiFe] hydrogenase is accountable for atmospheric H2 oxidation and that it therefore could be a strong controlling factor in the global H2 cycle. We show that the isolated enzyme possesses a lower affinity (Km = 300 nM) for H2 than the membrane-associated enzyme. Hence, the membrane association seems essential for a high affinity for H2. The enzyme is extremely thermostable and remains folded up to 95 °C. Strain SolV is the only known organism in which the group 1h [NiFe] hydrogenase is responsible for rapid growth on H2 as sole energy source as well as oxidation of subatmospheric H2. The ability to conserve energy from H2 could increase fitness of verrucomicrobial methanotrophs in geothermal ecosystems with varying CH4 fluxes. We propose that H2 oxidation can enhance growth of methanotrophs in aerated methane-driven ecosystems. Group 1h [NiFe] hydrogenases could therefore contribute to mitigation of global warming, since CH4 is an important and extremely potent greenhouse gas.


Asunto(s)
Verrucomicrobia/fisiología , Ecosistema , Hidrógeno , Hidrogenasas/metabolismo , Metano , Oxidación-Reducción , Verrucomicrobia/metabolismo
8.
ISME J ; 13(12): 3112-3125, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31477820

RESUMEN

Exposing a microbial community to alternating absence and presence of carbon substrate in aerobic conditions is an effective strategy for enrichment of storage polymers (polyhydroxybutyrate, PHB) producing microorganisms. In this work we investigate to which extent intermediate storage polymer production is a temperature independent microbial competition determining factor. Eight parallel bioreactors were operated in the temperature range of 20-40 °C, but intermediate storage polymer production was only obtained at 25-35 °C. Besides PHB production and consumption, cell decay and subsequent cryptic growth on lysis products was found to determine process properties and the microbial community structure at all operational temperatures. At 40 °C decay processes cannot be overcome with additional energy from storage polymers, and fast-growing microorganisms dominate the system. At 20 °C, highly competitive communities with ambiguous storage properties were enriched. The results described here demonstrate that a rigorous experimental approach could aid in the understanding of competitive strategies in microbial communities.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Aerobiosis , Bacterias/crecimiento & desarrollo , Polímeros/metabolismo , Temperatura
9.
Chembiochem ; 2018 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-29524328

RESUMEN

Since the discovery of the biological relevance of rare earth elements (REEs) for numerous different bacteria, questions concerning the advantages of REEs in the active sites of methanol dehydrogenases (MDHs) over calcium(II) and of why bacteria prefer light REEs have been a subject of debate. Here we report the cultivation and purification of the strictly REE-dependent methanotrophic bacterium Methylacidiphilum fumariolicum SolV with europium(III), as well as structural and kinetic analyses of the first methanol dehydrogenase incorporating Eu in the active site. Crystal structure determination of the Eu-MDH demonstrated that overall no major structural changes were induced by conversion to this REE. Circular dichroism (CD) measurements were used to determine optimal conditions for kinetic assays, whereas inductively coupled plasma mass spectrometry (ICP-MS) showed 70 % incorporation of Eu in the enzyme. Our studies explain why bacterial growth of SolV in the presence of Eu3+ is significantly slower than in the presence of La3+ /Ce3+ /Pr3+ : Eu-MDH possesses a decreased catalytic efficiency. Although REEs have similar properties, the differences in ionic radii and coordination numbers across the series significantly impact MDH efficiency.

10.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29453257

RESUMEN

Recently, methanotrophic and methylotrophic bacteria were found to utilize rare earth elements (REEs). To monitor the REE content in culture media of these bacteria, we have developed a rapid screening method using the Arsenazo III (AS III) dye for spectrophotometric REE detection in the low µM (0.1 to 10 µM) range. We designed this assay to follow LaIII and EuIII depletion from the culture medium by the acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum strain SolV. The assay can also be modified to screen the uptake of other REEs, such as PrIII, or to monitor the depletion of LaIII from growth media in neutrophilic methylotrophs such as Methylobacterium extorquens strain AM1. The AS III assay presents a convenient and fast detection method for REE levels in culture media and is a sensitive alternative to inductively coupled plasma mass spectrometry (ICP-MS) or atomic absorption spectroscopy (AAS).IMPORTANCE REE-dependent bacterial metabolism is a quickly emerging field, and while the importance of REEs for both methanotrophic and methylotrophic bacteria is now firmly established, many important questions, such as how these insoluble elements are taken up into cells, are still unanswered. Here, an Arsenazo III dye-based assay has been developed for fast, specific, and sensitive determination of REE content in different culture media. This assay presents a useful tool for optimizing cultivation protocols, as well as for routine REE monitoring during bacterial growth without the need for specialized analytical instrumentation. Furthermore, this assay has the potential to promote the discovery of other REE-dependent microorganisms and can help to elucidate the mechanisms for acquisition of REEs by methanotrophic and methylotrophic bacteria.


Asunto(s)
Arsenazo III/análisis , Técnicas Bacteriológicas/métodos , Medios de Cultivo/química , Metales de Tierras Raras/metabolismo , Methylobacterium extorquens/metabolismo , Verrucomicrobia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...