Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Más filtros

Base de datos
Intervalo de año de publicación
Nat Commun ; 12(1): 1641, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712611


Quasi-periodic moiré patterns and their effect on electronic properties of twisted bilayer graphene have been intensely studied. At small twist angle θ, due to atomic reconstruction, the moiré superlattice morphs into a network of narrow domain walls separating micron-scale AB and BA stacking regions. We use scanning probe photocurrent imaging to resolve nanoscale variations of the Seebeck coefficient occurring at these domain walls. The observed features become enhanced in a range of mid-infrared frequencies where the hexagonal boron nitride substrate is optically hyperbolic. Our results illustrate the capabilities of the nano-photocurrent technique for probing nanoscale electronic inhomogeneities in two-dimensional materials.

Nature ; 571(7763): 85-89, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31189959


Spin-orbit coupling (SOC) is the key to realizing time-reversal-invariant topological phases of matter1,2. SOC was predicted by Kane and Mele3 to stabilize a quantum spin Hall insulator; however, the weak intrinsic SOC in monolayer graphene4-7 has precluded experimental observation in this material. Here we exploit a layer-selective proximity effect-achieved via a van der Waals contact with a semiconducting transition-metal dichalcogenide8-21-to engineer Kane-Mele SOC in ultra clean bilayer graphene. Using high-resolution capacitance measurements to probe the bulk electronic compressibility, we find that SOC leads to the formation of a distinct, incompressible, gapped phase at charge neutrality. The experimental data agree quantitatively with a simple theoretical model in which the new phase results from SOC-driven band inversion. In contrast to Kane-Mele SOC in monolayer graphene, the inverted phase is not expected to be a time-reversal-invariant topological insulator, despite being separated from conventional band insulators by electric-field-tuned phase transitions where crystal symmetry mandates that the bulk gap must close22. Our electrical transport measurements reveal that the inverted phase has a conductivity of approximately e2/h (where e is the electron charge and h Planck's constant), which is suppressed by exceptionally small in-plane magnetic fields. The high conductivity and anomalous magnetoresistance are consistent with theoretical models that predict helical edge states within the inverted phase that are protected from backscattering by an emergent spin symmetry that remains robust even for large Rashba SOC. Our results pave the way for proximity engineering of strong topological insulators as well as correlated quantum phases in the strong spin-orbit regime in graphene heterostructures.

Sci Adv ; 4(12): eaat3672, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30588488


Transition metal dichalcogenides (TMDs) are interesting for understanding the fundamental physics of two-dimensional (2D) materials as well as for applications to many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below T M = 40 and 100 K in bulk semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon spin rotation (µSR), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The µSR measurements show the presence of large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order. DFT calculations show that this magnetism is promoted by the presence of defects in the crystal. The STM measurements show that the vast majority of defects in these materials are metal vacancies and chalcogen-metal antisites, which are randomly distributed in the lattice at the subpercent level. DFT indicates that the antisite defects are magnetic with a magnetic moment in the range of 0.9 to 2.8 µB. Further, we find that the magnetic order stabilized in 2H-MoTe2 and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and open a path to studying the interplay of 2D physics and magnetism in these interesting semiconductors.