Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 155(20): 204201, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34852480

RESUMEN

We perform two-dimensional Fourier transform spectroscopy on magneto-excitons in GaAs at magnetic fields and observe Zeeman splitting of the excitons. The Zeeman components are clearly resolved as separate peaks due to the two-dimensional nature of the spectra, leading to a more accurate measurement of the Zeeman splitting and the Landé g factors. Quantum coherent coupling between Zeeman components is observed using polarization dependent one-quantum two-dimensional spectroscopy. We use two-quantum two-dimensional spectroscopy to investigate higher four-particle correlations at high magnetic fields and reveal the role of the Zeeman splitting on the two-quantum transitions. The experimental two-dimensional spectra are simulated using the optical Bloch equations, where many-body effects are included phenomenologically.

2.
Phys Rev Lett ; 116(12): 127402, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-27058100

RESUMEN

We systematically investigate the excitonic dephasing of three representative transition-metal dichalcogenides, namely, MoS_{2}, MoSe_{2}, and WSe_{2} atomic monolayer thick and bulk crystals, in order to gain a proper understanding of the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy and temperature dependent absorption, combined with theoretical calculations of the phonon spectra, indicate electron-phonon interactions, to be the limiting factor. Surprisingly, the excitonic dephasing, differs only slightly between atomic monolayers and high quality bulk crystals, which indicates that material imperfections are not the limiting factor in atomically thin monolayer samples. The temperature dependence of the electronic band gap and the excitonic linewidth combined with "ab initio" calculations of the phonon energies and the phonon density of states reveal a strong interaction with the E' and E" phonon modes.

3.
Phys Rev Lett ; 116(15): 157401, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27127985

RESUMEN

In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

4.
J Chem Phys ; 142(21): 212422, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26049442

RESUMEN

Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with "ab initio" theoretical calculations of the phonon spectra, indicate strong interaction with the A1 (') phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

5.
J Chem Phys ; 141(13): 134505, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25296819

RESUMEN

The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10(11) cm(-2) was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent "rephasing" (S1) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S1 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The "two-quantum coherence" (S3) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.

6.
Rev Sci Instrum ; 84(2): 023107, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23464195

RESUMEN

A multidimensional optical nonlinear spectrometer (MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. The MONSTR provides output pulses for nonlinear excitation of materials and phase-stabilized reference pulses for heterodyne detection of the induced signal. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delays between them while maintaining phase stability. This arrangement is ideal for performing coherent optical experiments, such as multidimensional Fourier-transform spectroscopy. The present work reports on overcoming some important limitations on the original design of the MONSTR apparatus. One important advantage of the MONSTR is the fact that it is a closed platform, which provides the high stability. Once the optical alignment is performed, it is desirable to maintain the alignment over long periods of time. The previous design of the MONSTR was limited to a narrow spectral range defined by the optical coating of the beam splitters. In order to achieve tunability over a broad spectral range the internal optics needed to be changed. By using broadband coated and wedged beam splitters and compensator plates, combined with modifications of the beam paths, continuous tunability can be achieved from 520 nm to 1100 nm without changing any optics or performing alignment of the internal components of the MONSTR. Furthermore, in order to achieve continuous tunability in the spectral region between 520 nm and 720 nm, crucially important for studies on numerous biological molecules, a single longitudinal mode laser at 488.5 nm was identified and used as a metrology laser. The shorter wavelength of the metrology laser as compared to the usual HeNe laser has also increased the phase stability of the system. Finally, in order to perform experiments in the reflection geometry, a simple method to achieve active phase stabilization between the signal and the reference beams has been developed.


Asunto(s)
Dispositivos Ópticos , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Diseño de Equipo , Rayos Láser
7.
Rev Sci Instrum ; 80(7): 073108, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19655944

RESUMEN

The JILA multidimensional optical nonlinear spectrometer (JILA-MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delay between them while maintaining phase stability. The JILA-MONSTR provides output pulses for nonlinear excitation of materials and phase-stabilized reference pulses for heterodyne detection of the induced signal. This arrangement is ideal for performing coherent optical experiments, such as multidimensional Fourier-transform spectroscopy, which records the phase of the nonlinear signal as a function of the time delay between several of the excitation pulses. The resulting multidimensional spectrum is obtained from a Fourier transform. This spectrum can resolve, separate, and isolate coherent contributions to the light-matter interactions associated with electronic excitation at optical frequencies. To show the versatility of the JILA-MONSTR, several demonstrations of two-dimensional Fourier-transform spectroscopy are presented, including an example of a phase-cycling scheme that reduces noise. Also shown is a spectrum that accesses two-quantum coherences, where all excitation pulses require phase locking for detection of the signal.

8.
Phys Rev Lett ; 97(22): 227401, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17155840

RESUMEN

We resolve the remarkably sharp bound exciton transitions of highly enriched 28Si using a single-frequency laser and photoluminescence excitation spectroscopy, as well as photocurrent spectroscopy. Well-resolved doublets in the spectrum of the 31P donor reflect the hyperfine coupling of the electronic and nuclear donor spins. The optical detection of the nuclear spin state, and selective pumping and ionization of donors in specific electronic and nuclear spin states, suggests a number of new possibilities which could be useful for the realization of silicon-based quantum computers.

9.
Phys Rev Lett ; 96(10): 106805, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16605775

RESUMEN

The temperature dependence of the band gap of semiconducting carbon nanotubes was measured for ten different nanotube species. The unprecedented effectiveness in avoiding the effect of external strain, or any other effects originating from the surrounding environment, lead to an accurate measurement of the band gap temperature dependence, giving fundamental insight into the nanotube electron-phonon interaction. Small but reproducible energy shifts of the emission lines with temperature were observed, showing a moderate chirality dependence, well in agreement with recent theoretical calculations. In addition to the energy shift, a substantial narrowing of the emission lines was also observed. The removal of the temperature shift of the band gap allows the precise measurement of the effect of external strain on carbon nanotubes in different environments.

10.
Phys Rev Lett ; 90(18): 186402, 2003 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-12786030

RESUMEN

We report high-resolution infrared absorption spectra of the neutral donors phosphorus and lithium, and the neutral acceptor boron, in isotopically pure 28Si crystals. Surprisingly, many of the transitions are much sharper than previously reported in natural Si. In particular, the 2p(0) line of phosphorus in 28Si has a full width at half maximum of only 4.2 microeV, about 5 times less than the narrowest 2p(0) line previously reported for natural Si, making it the narrowest shallow impurity transition yet observed. The widely held assumptions that the impurity transitions previously reported in high quality samples of natural Si revealed the true, homogeneous linewidths, are thus shown to be incorrect. The sharper transitions in 28Si also reveal new substructures in the boron and lithium spectra.

11.
Phys Rev Lett ; 90(1): 016404, 2003 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-12570637

RESUMEN

The residual ground-state splitting of acceptors in high-quality silicon has been studied intensely by different experimental techniques for several decades. Recently, photoluminescence studies of isotopically pure silicon revealed the ground-state splitting to result from the random distribution of isotopes in natural silicon. Here we present a new model that explains these surprising experimental results, and discuss the implications for acceptor ground-state splittings observed in other isotopically mixed semiconductors, as well as for the acceptor ground state in semiconductor alloys.

12.
Phys Rev Lett ; 89(1): 016401, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12097056

RESUMEN

One of the oldest open questions in semiconductor physics is the origin of the small splittings of the neutral acceptor ground state in silicon which lead to a distribution of doublet splittings rather than the fourfold-degenerate state of Gamma(8) symmetry expected in the absence of perturbations. Here we show that these acceptor ground state splittings are absent in the photoluminescence spectra of acceptor bound excitons in isotopically purified 28Si, demonstrating conclusively the surprising result that the splittings previously observed in natural Si result from the randomness of the Si isotopic composition.

13.
Phys Rev Lett ; 86(26 Pt 1): 6010-3, 2001 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-11415416

RESUMEN

We report the first high resolution photoluminescence studies of isotopically pure Si (99.896% (28)Si). New information is obtained on isotopic effects on the indirect band gap energy, phonon energies, and phonon broadenings, which is in good agreement with calculations and previous results obtained in Ge and diamond. Remarkably, the linewidths of the no-phonon boron and phosphorus bound exciton transitions in the (28)Si sample are much narrower than in natural Si and are not well resolved at our maximum instrumental resolution of approximately 0.014 cm(-1). The removal of the dominant broadening resulting from isotopic randomness in natural Si reveals new fine structure in the boron bound exciton luminescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...