Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Más filtros

Base de datos
Intervalo de año de publicación
Sci Rep ; 11(1): 2927, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536485


Marine pollution impacts coastal nations around the world, and more so: (a) in confined maritime areas with significant marine traffic, (b) where exploitation of natural and mineral resources is taking place, or (c) in regions witnessing pressure from tourism, local population growth, and industry. In this work, Digital Elevation Models, hydrographic, and climatic data are used together with computer simulations to understand the control of climate change on marine pollution. The results show that different climate change signals can potentially alter the flow and concentration of pollution in the European Seas, when compared to the present day. Ultimately, this work identifies the main sources of marine pollution as: (1) rivers and streams near cities and industrialised areas, (2) coastal areas experiencing sudden demographic pressures, (3) offshore shipping lanes in which oil and other marine debris are released, and (4) areas of rugged seafloor where industrial fishing takes place. This paper finishes by describing new educational material prepared to teach school children around the world. It explains why how a new training curriculum and e-game developed by Sea4All can be crucial in future Environmental Education and Education for a Sustainable Development.

Sci Rep ; 6: 36882, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830742


We present new mathematical and geological models to assist civil protection authorities in the mitigation of potential oil spill accidents in the Eastern Mediterranean Sea. Oil spill simulations for 19 existing offshore wells were carried out based on novel and high resolution bathymetric, meteorological, oceanographic, and geomorphological data. The simulations show a trend for east and northeast movement of oil spills into the Levantine Basin, affecting the coastal areas of Israel, Lebanon and Syria. Oil slicks will reach the coast in 1 to 20 days, driven by the action of the winds, currents and waves. By applying a qualitative analysis, seabed morphology is for the first time related to the direction of the oil slick expansion, as it is able to alter the movement of sea currents. Specifically, the direction of the major axis of the oil spills, in most of the cases examined, is oriented according to the prevailing azimuth of bathymetric features. This work suggests that oil spills in the Eastern Mediterranean Sea should be mitigated in the very few hours after their onset, and before wind and currents disperse them. We explain that protocols should be prioritized between neighboring countries to mitigate any oil spills.

Environ Pollut ; 206: 390-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26253313


Oil spill models are combined with bathymetric, meteorological, oceanographic, and geomorphological data to model a series of oil spill accidents in the Eastern Mediterranean Sea. A total of 104 oil spill simulations, computed for 11 different locations in the Levantine Basin, show that oil slicks will reach the coast of Cyprus in four (4) to seven (7) days in summer conditions. Oil slick trajectories are controlled by prevailing winds and current eddies. Based on these results, we support the use of chemical dispersants in the very few hours after large accidental oil spills. As a corollary, we show shoreline susceptibility to vary depending on: a) differences in coastline morphology and exposure to wave action, b) the existence of uplifted wave-cut platforms, coastal lagoons and pools, and c) the presence of tourist and protected environmental areas. Mitigation work should take into account the relatively high susceptibility of parts of the Eastern Mediterranean.

Monitoreo del Ambiente/métodos , Modelos Teóricos , Contaminación por Petróleo/análisis , Simulación por Computador , Mar Mediterráneo , Estaciones del Año
Mar Pollut Bull ; 86(1-2): 443-457, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25113103


This study combines bathymetric, geomorphological, geological data and oil spill predictions to model the impact of oil spills in two accident scenarios from offshore Crete, Eastern Mediterranean. The aim is to present a new three-step method of use by emergency teams and local authorities in the assessment of shoreline and offshore susceptibility to oil spills. The three-step method comprises: (1) real-time analyses of bathymetric, geomorphological, geological and oceanographic data; (2) oil dispersion simulations under known wind and sea current conditions; and (3) the compilation of final hazard maps based on information from (1) and (2) and on shoreline susceptibility data. The results in this paper show that zones of high to very-high susceptibility around the island of Crete are related to: (a) offshore bathymetric features, including the presence of offshore scarps and seamounts; (b) shoreline geology, and (c) the presence near the shore of sedimentary basins filled with unconsolidated deposits of high permeability. Oil spills, under particular weather and oceanographic conditions, may quickly spread and reach the shoreline 5-96 h after the initial accident. As a corollary of this work, we present the South Aegean region around Crete as a valid case-study for confined marine basins, narrow seaways, or interior seas around island groups.

Mapeo Geográfico , Modelos Teóricos , Contaminación por Petróleo/análisis , Contaminación por Petróleo/prevención & control , Medición de Riesgo/métodos , Simulación por Computador , Fenómenos Geológicos , Grecia , Oceanografía/métodos , Oceanografía/estadística & datos numéricos , Océanos y Mares , Contaminación por Petróleo/estadística & datos numéricos , Factores de Tiempo , Movimientos del Agua , Tiempo (Meteorología)