Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 172241, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582119

RESUMEN

Carbon sequestration via afforestation and forest growth is effective for mitigating global warming. Accurate and robust information on forest growth characteristics by tree species, region, and large-scale land-use change is vital and future prediction of forest carbon stocks based on this information is of great significance. These predictions allow exploring forestry practices that maximize carbon sequestration by forests, including wood production. Forest inventories based on field measurements are considered the most accurate method for estimating forest carbon stocks. Japan's national forest inventories (NFIs) provide stand volumes for all Japanese forests, and estimates from direct field observations (m-NFIs) are the most reliable. Therefore, using the m-NFI from 2009 to 2013, we selected four major forest plantation species in Japan: Cryptomeria japonica, Chamaecyparis obtusa, Pinus spp., and Larix kaempferi and presented their forest age-carbon density function. We then estimated changes in forest carbon stocks from the past to the present using the functions. Next, we investigated the differences in the carbon sequestration potential of forests, including wood production, between five forestry practice scenarios with varying harvesting and afforestation rates, until 2061. Our results indicate that, for all four forest types, the estimates of growth rates and past forest carbon stocks in this study were higher than those considered thus far. The predicted carbon sequestration from 2011 to 2061, assuming that 100 % of harvested carbon is retained for a long time, twice the rate of harvesting compared to the current rate, and a 100 % afforestation rate in harvested area, was three to four times higher than that in a scenario with no harvesting or replanting. Our results suggest that planted Japanese forests can exhibit high carbon sequestration potential under the premise of active management, harvesting, afforestation, and prolonging the residence time of stored carbon in wood products with technology development.

2.
Proc Natl Acad Sci U S A ; 120(42): e2301596120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812704

RESUMEN

Carbon dioxide and water vapor exchanges between tropical forest canopies and the atmosphere through photosynthesis, respiration, and evapotranspiration (ET) influence carbon and water cycling at the regional and global scales. Their inter- and intra-annual variations are sensitive to seasonal rhythms and longer-timescale tropical climatic events. In the present study, we assessed the El Niño-Southern Oscillation (ENSO) influence on ET and on the net ecosystem exchange (NEE), using eddy-covariance flux observations in a Bornean rainforest over a 10-y period (2010-2019) that included several El Niño and La Niña events. From flux model inversions, we inferred ecophysiological properties, notably the canopy stomatal conductance and "big-leaf" maximum carboxylation rate (Vcmax25_BL). Mean ET values were similar between ENSO phases (El Niño, La Niña, and neutral conditions). Conversely, the mean net ecosystem productivity was highest during La Niña events and lowest during El Niño events. Combining Shapley additive explanation calculations for nine controlling factors with a machine-learning algorithm, we determined that the primary factors for ET and NEE in the La Niña and neutral phases were incoming shortwave solar radiation and Vcmax25_BL, respectively, but that canopy stomatal conductance was the most significant factor for both ET and NEE in the El Niño phase. A combined stomatal-photosynthesis model approach further indicated that Vcmax25_BL differences between ENSO phases were the most significant controlling factor for canopy photosynthesis, emphasizing the strong need to account for ENSO-induced ecophysiological factor variations in model projections of the long-term carbon balance in Southeast Asian tropical rainforests.


Asunto(s)
El Niño Oscilación del Sur , Bosque Lluvioso , Ecosistema , Bosques , Clima Tropical
3.
Proc Natl Acad Sci U S A ; 117(42): 26145-26150, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020284

RESUMEN

Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas.


Asunto(s)
Riego Agrícola/normas , Conservación de los Recursos Hídricos/métodos , Productos Agrícolas/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Agua Subterránea/análisis , Modelos Teóricos , Abastecimiento de Agua/normas , Recursos Hídricos/provisión & distribución
4.
Sci Rep ; 10(1): 7895, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398724

RESUMEN

An accurate estimate of total forest carbon (C) stock and C uptake is crucial for predicting global warming scenarios and planning CO2 emission reductions. Forest inventory, based on field measurements of individual tree sizes, is considered the most accurate estimation method for forest C stock. Japan's national forest inventory (NFI) provides stand-scale stem volume for the entire forested area based on (1) direct field measurements (m-NFI) and (2) prediction using yield tables (p-NFI). Here, we show that Japanese national and local forestry agencies and some research studies have used p-NFI and greatly underestimated the Japanese forest C stock (58-64%) and net annual C uptake (41-48%). This was because approximately 10% of the forest area was not counted in p-NFI and because the yield tables in p-NFI, which were constructed around 1970, were outdated. For accurate estimation of the forest C stock, yield tables used in p-NFI should be reconstructed or ideally field measurement campaigns for m-NFI should be continued. In the future, appropriate forest management plans are necessary to effectively use the high CO2 absorption capacity of Japanese forests and these should be compared with other industries' CO2 reduction plans from a cost-benefit perspective.

5.
J Plant Res ; 133(2): 175-191, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31858360

RESUMEN

The physiological response of trees to drought is crucial for understanding the risk of mortality and its feedbacks to climate under the increase in droughts due to climate change, especially for the largest trees in tropical rainforests because of their large contribution to total carbon storage and water use. We determined the response of the mean canopy stomatal conductance per unit leaf area (gs) and whole-tree hydraulic conductance (Gp) of the largest individuals (38-53 m in height) of a typical canopy tree species in a Bornean tropical rainforest, Dryobalanops aromatica C.F.Gaertn., to soil moisture reduction by a 4-month rainfall exclusion experiment (REE) based on the measurements of sap flux and leaf water potentials at midday and dawn. In the mesic condition, the gs at vapor pressure deficit (D) = 1 kPa (gsref) was small compared with the reported values in various biomes. The sensitivity of gs to D (m) at a given gsref (m/gsref) was ≥ 0.6 irrespective of soil moisture conditions, indicating intrinsically sensitive stomatal control with increasing D. The REE caused greater soil drought and decreased the mean leaf water potentials at midday and dawn to the more negative values than the control under the relatively dry conditions due to natural reduction in rainfall. However, the REE did not cause a greater decrease in gs nor any clear alteration in the sensitivity of gs to D compared with the control, and induced greater decreases in Gp during REE than the control. Thus, though the small gs and the sensitive stomatal response to D indicate the water saving characteristics of the studied trees under usual mesic conditions, their limited stomatal regulation in response to soil drought by REE and the resulting decline in Gp might suggest a poor resistance to the unusually severe drought expected in the future.


Asunto(s)
Dipterocarpaceae/fisiología , Sequías , Estomas de Plantas/fisiología , Transpiración de Plantas , Bosque Lluvioso , Hojas de la Planta/fisiología , Suelo , Árboles , Agua
6.
Tree Physiol ; 38(8): 1166-1179, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29608763

RESUMEN

The mesic-origin plantation species Robinia pseudoacacia L. has been successfully grown in many arid land plantations around the world but often exhibits dieback and reduced growth due to drought. Therefore, to explore the behavior of this species under changing environmental conditions, we examined the relationship between ecophysiological traits, gas exchange and plant hydraulics over a 3-year period in trees that experienced reduced plant hydraulic conductance (Gp) in summer. We found that the transpiration rate, stomatal conductance (Gs) and minimum leaf water potential (Ψlmin) decreased in early summer in response to a decrease in Gp, and that Gp did not recover until the expansion of new leaves in spring. However, we did not observe any changes in the leaf area index or other ecophysiological traits at the leaf level in response to this reduction in Gp. Furthermore, model simulations based on measured data revealed that the canopy-scale photosynthetic rate (Ac) was 15-25% higher than the simulated Ac when it was assumed that Ψlmin remained constant after spring but almost the same as the simulated Ac when it was assumed that Gp remained high even after spring. These findings indicate that R. pseudoacacia was frequently exposed to a reduced Gp at the study site but offset its effects on Ac by plastically lowering Ψlmin to avoid experiencing any further reduction in Gp or Gs.


Asunto(s)
Carbono/metabolismo , Sequías , Robinia/fisiología , Agua/metabolismo , Ambiente , Japón , Hojas de la Planta/fisiología , Estaciones del Año , Árboles/fisiología
7.
New Phytol ; 219(3): 851-869, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451313

RESUMEN

Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.


Asunto(s)
Bosques , Humedad , Árboles/fisiología , Clima Tropical , Dióxido de Carbono/metabolismo , Modelos Teóricos
8.
Tree Physiol ; 37(10): 1301-1311, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541561

RESUMEN

Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations.


Asunto(s)
Dipterocarpaceae/fisiología , Sequías , Fotosíntesis , Hojas de la Planta/fisiología , Árboles/fisiología , Agua/fisiología , Borneo , Cambio Climático , Malasia , Ósmosis , Bosque Lluvioso
9.
Int J Biometeorol ; 59(9): 1145-56, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25394393

RESUMEN

Valuable teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia. This study sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There was no rain during the brief leaf senescence phenophase in our study. Leveraging detailed field observations, we employed boosted regression tree (BRT) analysis to identify the primary controls on throughfall amount and ratio during each canopy phenophase. Whereas throughfall amounts were always dominated by rainfall magnitude (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during each canopy phenophase. Abiotic variables, such as rainfall amount and air temperature, trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is needed to better understand the biogeochemistry of leaf emergence in teak plantations.


Asunto(s)
Lamiaceae/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Agricultura , Tailandia , Tiempo (Meteorología)
10.
Tree Physiol ; 34(5): 503-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24876294

RESUMEN

Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.


Asunto(s)
Dióxido de Carbono/metabolismo , Dipterocarpaceae/fisiología , Bosque Lluvioso , Árboles/fisiología , Borneo , Dipterocarpaceae/crecimiento & desarrollo , Malasia , Transpiración de Plantas , Árboles/crecimiento & desarrollo
11.
Tree Physiol ; 34(3): 285-301, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24646689

RESUMEN

The rapid and widespread expansion of rubber plantations in Southeast Asia necessitates a greater understanding of tree physiology and the impacts of water consumption on local hydrology. Sap flow measurements were used to study the intra- and inter-annual variations in transpiration rate (Et) in a rubber stand in the low-elevation plain of central Cambodia. Mean stand sap flux density (JS) indicates that rubber trees actively transpire in the rainy season, but become inactive in the dry season. A sharp, brief drop in JS occurred simultaneously with leaf shedding in the middle of the dry season in January. Although the annual maxima of JS were approximately the same in the two study years, the maximum daily stand Et of ∼2.0 mm day(-1) in 2010 increased to ∼2.4 mm day(-1) in 2011. Canopy-level stomatal response was well explained by changes in solar radiation, vapor pressure deficit, soil moisture availability, leaf area, and stem diameter. Rubber trees had a relatively small potential to transpire at the beginning of the study period, compared with average diffuse-porous species. After 2 years of growth in stem diameter, transpiration potential was comparable to other species. The sensitivity of canopy conductance (gc) to atmospheric drought indicates isohydric behavior of rubber trees. Modeling also predicted a relatively small sensitivity of gc to the soil moisture deficit and a rapid decrease in gc under extreme drought conditions. However, annual observations suggest the possibility of a change in leaf characteristics with tree maturity and/or initiation of latex tapping. The estimated annual stand Et was 469 mm year(-1) in 2010, increasing to 658 mm year(-1) in 2011. Diagnostic analysis using the derived gc model showed that inter-annual change in stand Et in the rapidly growing young rubber stand was determined mainly by tree growth rate, not by differences in air and soil variables in the surrounding environment. Future research should focus on the potentially broad applicability of the relationship between Et and tree size as well as environmental factors at stands different in terms of clonal type and age.


Asunto(s)
Transpiración de Plantas/fisiología , Goma/metabolismo , Cambodia , Conceptos Meteorológicos , Modelos Biológicos , Exudados de Plantas/fisiología , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Estaciones del Año , Árboles/fisiología
12.
J Plant Res ; 126(4): 505-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23283581

RESUMEN

To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.


Asunto(s)
Carbono/metabolismo , Árboles/metabolismo , Agua/metabolismo , Biomasa , Biometría , Ciclo del Carbono , Malasia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estaciones del Año , Suelo , Árboles/crecimiento & desarrollo , Clima Tropical
13.
Plant Cell Environ ; 35(1): 61-71, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21933196

RESUMEN

Although Bornean tropical rainforests are among the moistest biomes in the world, they sporadically experience periods of water stress. The observations indicate that these ecosystems tend to have little regulation of water use, despite episodes of relatively severe drought. This water-use behaviour is often referred to as anisohydric behaviour, as opposed to isohydric plants that regulate stomatal movement to prevent hydraulic failure. Although it is generally thought that anisohydric behaviour is an adaptation to more drought-prone habitats, we show that anisohydric plants may also be more favoured than isohydric plants under very moist environments where there is little risk of hydraulic failure. To explore this subject, we examined the advantages of isohydric and anisohydric species as a function of the hydroclimatic environment using a stochastic model of soil moisture and carbon assimilation dynamics parameterized by field observations. The results showed that under very moist conditions, anisohydric species tend to have higher productivity than isohydric plants, despite the fact that the two plant types show almost the same drought-induced mortality. As precipitation decreases, the mortality of anisohydric plants drastically increases whereas that of isohydric plants remains relatively constant and low; in these conditions, isohydric plants surpass anisohydric plants in their productivity.


Asunto(s)
Adaptación Fisiológica/fisiología , Modelos Biológicos , Transpiración de Plantas/fisiología , Estrés Fisiológico/fisiología , Borneo , Carbono/metabolismo , Sequías , Ecosistema , Modelos Estadísticos , Plantas , Lluvia , Estaciones del Año , Suelo/química , Especificidad de la Especie , Procesos Estocásticos , Árboles/metabolismo , Clima Tropical , Agua/metabolismo
14.
Tree Physiol ; 30(6): 748-60, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20392878

RESUMEN

Japanese beech (Fagus crenata Blume) is widely distributed across the Japan archipelago. This species requires morphological and physiological plasticity to cope with the diverse environmental conditions across its geographical range. In this study, we monitored transpiration (E) to examine plasticity mechanisms as an example of geographical variation in whole-tree water use. We determined E by measuring the sap flux of Japanese beech trees in three stands: Kuromatsunai (KR), Kawatabi (KW) and Shiiba (SH), which were located in different areas in Japan. We conducted biometric measurements to characterize leaf and crown morphology and evaluated geographical variations in E characteristics, such as canopy aerodynamic conductance, canopy stomatal conductance (G(S)) and decoupling coefficient (Omega). Leaf morphology and crown shape showed clear geographical clines. Individual leaf areas decreased in the order KR > KW > SH. The crown shape in the KR and KW stands was cylindrical but planar in the SH stand. We evaluated the effects of leaf and crown morphology on E characteristics. The Omega values showed that, while E in the KW and SH stands was highly sensitive to G(S) and atmospheric evaporative demand, E in the KR stand was sensitive to radiative energy. To maximize carbon gain without further water loss, trees maintain a high G(S) in a moist habitat. For example, the KR trees may decrease E by reducing their absorbed radiation energy by adjusting the individual leaf size and crown structure. Our results indicate that the geographical variation in the water use pattern of Japanese beech is determined by the interaction between its physiological and morphological status.


Asunto(s)
Fagus/fisiología , Transpiración de Plantas/fisiología , Técnicas Biosensibles , Cloroplastos/genética , Cloroplastos/metabolismo , ADN de Plantas/genética , Ecosistema , Fagus/genética , Fagus/crecimiento & desarrollo , Geografía , Japón , Meteoroides , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Energía Solar
15.
Tree Physiol ; 30(1): 129-38, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19822581

RESUMEN

In this study, we aimed to assess how sample sizes affect confidence of stand-scale transpiration (E) estimates calculated from sap flux (F(d)) and sapwood area (A(S_tree)) measurements of individual trees. In a Japanese cypress plantation, we measured F(d) and A(S_tree) in all trees (n = 58) within a 20 x 20 m study plot, which was divided into four 10 x 10 subplots. We calculated E from stand A(S_tree) (A(S_stand)) and mean stand F(d) (J(S)) values. Using Monte Carlo analyses, we examined the potential errors associated with sample sizes in E, A(S_stand) and J(S) using the original A(S_tree) and F(d) data sets. Consequently, we defined the optimal sample sizes of 10 and 15 for A(S_stand) and J(S) estimates, respectively, in the 20 x 20 m plot. Sample sizes larger than the optimal sample sizes did not decrease potential errors. The optimal sample sizes for J(S) changed according to plot size (e.g., 10 x 10 and 10 x 20 m), whereas the optimal sample sizes for A(S_stand) did not. As well, the optimal sample sizes for J(S) did not change in different vapor pressure deficit conditions. In terms of E estimates, these results suggest that the tree-to-tree variations in F(d) vary among different plots, and that plot size to capture tree-to-tree variations in F(d) is an important factor. The sample sizes determined in this study will be helpful for planning the balanced sampling designs to extrapolate stand-scale estimates to catchment-scale estimates.


Asunto(s)
Cupressus/fisiología , Transpiración de Plantas/fisiología , Árboles/fisiología , Japón , Método de Montecarlo , Densidad de Población , Lluvia , Reproducibilidad de los Resultados , Tamaño de la Muestra
16.
Tree Physiol ; 27(2): 161-8, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17241959

RESUMEN

We determined the amount of information needed to estimate watershed-scale transpiration in a Japanese cedar (Cryptomeria japonica D. Don) forest from sap flow measurements of individual trees. Measurements of tree biometrics (diameter at breast height (DBH) and tree sapwood area (AS_tree)), and tree-to-tree and radial variations in xylem sap flux density (Fd) were made in two stand plots, an upper slope plot (UP) and a lower slope plot (LP), during a growing season characterized by significant variations in environmental factors. We then investigated how mean stand sap flux density (JS) and a tree stem allometric relationship (DBH-AS_tree) varied between the stands. Appropriate sample sizes for estimating representative JS values were determined. Both a unique and a general function allowed description of the allometric relationship along the slope, but the data for its formulation was required for both the UP and LP. Values of JS in the UP and LP were similar during the study period despite differences in tree density and size between the plots, implying that JS measured in a partial stand in a watershed is a reasonable estimate of JS in other stands in the watershed, and that stand sapwood area calculated from AS_tree is a strong determinant of water use in a forest watershed. To estimate JS in both the UP and LP, it was necessary to sample at least 10 trees in each plot.


Asunto(s)
Cryptomeria/fisiología , Ecosistema , Transpiración de Plantas/fisiología , Árboles/fisiología , Xilema/fisiología , Altitud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...