Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35567255

RESUMEN

The geophyte Cyclamen graecum is native to the eastern Mediterranean. Its beautiful flowers with upswept pink petals appear during early autumn, after the summer drought period and before leaf expansion in late autumn. The floral and leaf development alternates with their cessation in early winter and late spring, respectively. Ecophysiological parameters and processes underlining the life-cycle of C. graecum have not previously been published. Seasonal fluctuations of sugars, starch, and free proline have been investigated in tubers, leaves, pedicels, and petals, as well as petal and leaf water status. At the whole plant level, the seasonal co-existence of leaves and flowers is marked by an elevated soluble sugar content, which was gradually reduced as the above-ground plant parts shed. The sugar content of petals and pedicels was lower than that of leaves and tubers. Leaf starch content increased from late autumn to spring and was comparable to that of tubers. The starch content in petals and pedicels was substantially lower than that of tubers and leaves. In tubers, monthly proline accumulation was sustained at relatively constant values. Although the partitioning of proline in various organs did not show a considerable seasonal variation, resulting in an unchanged profile of the trends between tubers, leaves, and flowers, the seasonal differences in proline accumulation were remarkable at the whole plant level. The pronounced petal proline content during the flowering period seems to be associated with the maintenance of floral turgor. Leaf proline content increased with the advance of the growth season. The values of leaf relative water content were sustained fairly constant before the senescence stage, but lower than the typical values of turgid and transpiring leaves. Relationships of the studied parameters with rainfall indicate the responsiveness of C. graecum to water availability in its habitat in the Mediterranean ecosystem.

2.
J Hazard Mater ; 434: 128906, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35452984

RESUMEN

Lavrio is a Greek town with several abandoned Ag/Pb mines. In this study, 19 potentially toxic elements (PTEs) were measured in soil, weeds, and olives. Levels of seven of the studied PTEs in soil were highly elevated: Zn (56.2-58,726 mg kg-1), Pb (36.2-31,332), As (7.3-10,886), Cu (8.3-1273), Sb (0.99-297.8), Cd (0.17-287.7), and Ag (0.09-38.7). Synchrotron-based X-ray absorption near edge structure analysis of the soils revealed that As was predominantly associated with scorodite, Pb with humic substances, Zn with illite, Zn(OH)2 and humic substances, and Fe with goethite-like minerals. The transfer of the PTEs to weeds was relatively low, with the transfer coefficient being less than 1.0 for all PTEs. Cadmium in table olives surpassed 0.05 mg kg-1 fresh weight (the limit in EU), while Pb surpassed its limit in approximately half of the samples. Health risk assessment confirmed soil contamination in the study area where As and Pb hazard quotients were well above 1.0 and the average hazard index equaled 11.40. Additionally, the cancer risk values exceeding the 1 × 10-4 threshold. The results obtained in the study indicate that Lavrio urgently requires an adequate ecofriendly remediation plan, including revegetation with tolerant species and targeted efforts to chemically stabilize harmful PTEs. The presented approach may serve as a pivotal study for industrial areas with similar contamination levels.


Asunto(s)
Metales Pesados , Olea , Contaminantes del Suelo , Monitoreo del Ambiente/métodos , Grecia , Sustancias Húmicas/análisis , Plomo/análisis , Plomo/toxicidad , Metales Pesados/análisis , Metales Pesados/toxicidad , Minería , Medición de Riesgo/métodos , Plata/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
3.
Plants (Basel) ; 11(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35270053

RESUMEN

A 21-year Enhanced Vegetation Index (EVI) time-series produced from MODIS satellite images was used to study the complex phenological cycle of the drought semi-deciduous shrub Phlomis fruticosa and additionally to identify and compare phenological events between two Mediterranean sites with different microclimates. In the more xeric Araxos site, spring leaf fall starts earlier, autumn revival occurs later, and the dry period is longer, compared with the more favorable Louros site. Accordingly, the control of climatic factors on phenological events was examined and found that the Araxos site is mostly influenced by rain related events while Louros site by both rain and temperature. Spring phenological events showed significant shifts at a rate of 1-4.9 days per year in Araxos, which were positively related to trends for decreasing spring precipitation and increasing summer temperature. Furthermore, the climatic control on the inter-annual EVI fluctuation was examined through multiple linear regression and machine learning approaches. For both sites, temperature during the previous 2-3 months and rain days of the previous 3 months were identified as the main drivers of the EVI profile. Our results emphasize the importance of focusing on a single species and small-spatial-scale information in connecting vegetation responses to the climate crisis.

4.
PeerJ ; 9: e11522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141483

RESUMEN

The aim of this study is to investigate the effect of three daily fish feeding frequencies, two, four and eight times per day (FF2, FF4, and FF8, respectively) on growth performance of sea bass (Dicentrarchus labrax)and lettuce plants (Lactuca sativa) reared in aquaponics. 171 juvenile sea bass with an average body weight of 6.80 ± 0.095 g were used, together with 24 lettuce plants with an average initial height of 11.78 ± 0.074 cm over a 45-day trial period. FF2 fish group showed a significantly lower final weight, weight gain and specific growth rate than the FF4 and FF8 groups. Voluntary feed intake was similar for all the three feeding frequencies treatmens (p > 0.05). No plant mortality was observed during the 45-day study period. All three aquaponic systems resulted in a similar leaf fresh weight and fresh and dry aerial biomass. The results of the present study showed that the FF4 or FF8 feeding frequency contributes to the more efficient utilization of nutrients for better growth of sea bass adapted to fresh water while successfully supporting plant growth to a marketable biomass.

5.
Environ Int ; 146: 106233, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189990

RESUMEN

Green remediation of soils highly contaminated with potentially toxic elements (PTEs) can be achieved using suitable plants. Such phytoremediation procedure often takes into consideration PTE concentrations in plants only, but not produced biomass. Phytoremediation potential of certain species of wild plants for PTEs in contaminated floodplain soils has not been assessed yet. Therefore, in this work 12 native species were tested, 3 of which (Poa angustifolia, Galium mollugo, and Stellaria holostea) to our knowledge have never been used before, in a two-year pot experiment and assessed their potential as phytoremediation species. The results showed that plant PTE concentrations were dramatically elevated for Cd and Zn in Alopecurus pratensis, Arrhenatherum elatius, Bromus inermis, Artemisia vulgaris, Achillea millefolium, Galium mollugo, Stellaria holostea, and Silene vulgaris. A. vulgaris was by far the most highly PTE absorbing plant among the 12 tested in this work, especially concerning Zn, Cd, and to a lesser degree Cu and Ni. Also, among species non-studied-before, G. mollugo and S. holostea were characterized by high Zn and Cd uptake, while P. angustifolia did not. Assessing the number of harvests necessary to decrease soil PTE to half of the initial concentrations, it was found that for Cd plants would achieve site phytoremediation within 8 (A. vulgaris) to 28 (S. holostea) and 51 (G. mollugo) harvests, while for Zn, harvests ranged from 104 (A. vulgaris) to 209 (S. holostea), and 251 (A. millefolium). A clear grouping of the tested species according to their functional type was evident. Herbaceous species were collectively more efficient than grasses in PTE uptake combined by high biomass accumulation; thus, they may act as key-species in a phytoremediation-related concept. Our approach puts phytoremediation into a practical perspective as to whether the process can be achieved within a measureable amount of time. In conclusion, A. vulgaris behaved as a hyperaccumulator plant species in our heavily contaminated soil, while never-studied-before G. mollugo and S. holostea also had a hyperaccumulator behavior, especially for Cd and Zn. Although more research is necessary for conclusive results, our study is pivotal in that it would help in assessing plant species as potential phytoremediation species in heavily contaminated soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Metales Pesados/análisis , Plantas , Suelo , Contaminantes del Suelo/análisis
6.
Environ Int ; 127: 819-847, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31051325

RESUMEN

Trace elements (TEs) may have toxic effects to plants and humans; thus, countries and organizations impose maximum allowable regulation limits of their concentrations in soils. Usually such limits are placed in different categories according to soil use, soil properties or based on both attributes. However, some countries have regulation limits irrespective of differentiation in soil properties. In this review, we aimed at collecting TE regulation limits in soils from major countries and organizations around the globe, and critiquing them by assessing potential human health risks in the case of soils attaining the maximum allowable values. We explored the soil-to-human pathway and differentiated among three major exposures from TEs, i.e., residential, industrial and agricultural. We observed the existence of problems concerning TE regulation limits, among which the fact that limits across countries do not regulate the same TEs, not even a minimum number of TEs. This indicates that countries do not seem to agree on which regulation limits of TEs pose a high risk. Also, these regulation limits do not take into account TE mobility to neighbouring environment interphases such as plant, especially edible, and water matrices. Moreover, limits for same TEs are vastly diverse across countries; this indicates that those countries have conflicting information concerning TE-related health risks. Subsequently, we addressed this problem of diversity by quantifying resultant risks; we did that by calculating human health risk indices, taking into consideration the cases in which the highest allowable TE limits are attained in soil. Arsenic limits were found to generate a relatively high hazard quotient (HQi, accounting for human intake over the maximum allowable oral reference dose for that same TE), indicating that its risk tends to be underestimated. Other TE limits, such as those of Cd, Cu, Ni, Pb, and Zn typically result in low HQi, meaning that limits in their cases are rather overprotective. Our approach reveals the need of reducing diversity in regulation limits by drafting soil legislations of worldwide validity, since risks are common across countries. We suggest that new directions should strategically tend to (a) reduce limits of TEs with underestimated contribution to health risk (such as As), (b) cautiously increase limits of TEs that currently cause minor health risks, (c) quantify TE risks associated with uptake to edible plants and potable water, and (d) consider multi-element contamination cases, where risks are cumulatively enhanced due to TE synergism.


Asunto(s)
Monitoreo del Ambiente/métodos , Medición de Riesgo , Contaminantes del Suelo/química , Suelo/química , Oligoelementos/química , Humanos
7.
Environ Sci Pollut Res Int ; 26(1): 14-23, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29961221

RESUMEN

Varying concentrations of soil Cr(VI) were used in order to explore the tolerance thresholds and phytoremediation potential of Greek oregano (Origanum vulgare), in a pot experiment conducted outdoors. Oregano exhibited a rather exceptional capacity to bioaccumulate Cr in both the aerial part (up to 1200 mg of total Cr kg-1 DM) and the root-reaching 4300 mg kg-1 DM when grown in soil [Cr(VI)] of 150-200 mg kg-1. Plant responses indicated that there was a threshold set at 100 mg Cr(VI) kg-1 in the soil, above which the following results were recorded: (i) a restriction of Cr translocation from below- to above-ground plant part, (ii) a raise of the soil-to-root Cr transfer, and (iii) the Cr(III) evolution from the reduction of Cr(VI) was significantly decelerated in the root and accelerated in the aerial part. Soil [Cr] that surpassed this threshold challenged plant tolerance, resulting in a dose-dependent reduction of growth and antioxidant phenolics pool. Nonetheless, the significant Cr uptake capacity at plant level accounted for the considerably short remediation time (i.e., 29 years at soil [Cr(VI)] of 150 mg kg-1) calculated according to these results. The overall performance of oregano indicated that phytoremediation would be feasible at sites with Cr contamination levels ranging within the above-defined thresholds.


Asunto(s)
Cromo/análisis , Origanum/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Biodegradación Ambiental , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Origanum/efectos de los fármacos , Componentes Aéreos de las Plantas/efectos de los fármacos , Componentes Aéreos de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
8.
Chemosphere ; 195: 291-300, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29272798

RESUMEN

Dynamics of chromate (Cr(VI)) in contaminated soils may be modulated by decreasing its phytoavailability via the addition of organic matter-rich amendments, which might accelerate Cr(VI) reduction to inert chromite (Cr(III)) or high-cation exchange capacity amendments. We studied Cr(VI) phytoavailability of oregano in a Cr(VI)-spiked acidic soil non-treated (S) and treated with peat (SP), lime (SL), and zeolite (SZ). The addition of Cr(VI) increased the concentrations of Cr(VI) and Cr(III) in soils and plants, especially in the lime-amended soil. The plant biomass decreased in the lime-amended soil compared to the un-spiked soil (control) due to decreased plant phosphorus concentrations and high Cr(VI) concentrations in root at that treatment. Oregano in the peat-amended soil exhibited significantly less toxic effects, due to the role of organic matter in reducing toxic Cr(VI) to Cr(III) and boosted plant vigour in this treatment. In the lime-amended soil, the parameters of soil Cr(VI), soil Cr(III), and root Cr(III) increased significantly compared to the non-amended soil, indicating that Cr(VI) reduction to Cr(III) was accelerated at high pH. Added zeolite failed to decreased Cr(VI) level to soil and plant. Oregano achieved a total uptake of Cr(III) and Cr(VI) of 0.275 mg in plant kg-1 soil in a pot in the non-amended soil. We conclude that peat as soil amendment might be considered as a suitable option for decreasing Cr(VI) toxicity in soil and plant, and that oregano as tolerant plant species has a certain potential to be used as a Cr accumulator.


Asunto(s)
Compuestos de Calcio/farmacología , Cromo/toxicidad , Origanum/efectos de los fármacos , Óxidos/farmacología , Suelo/química , Zeolitas/farmacología , Biomasa , Cromatos , Origanum/metabolismo , Contaminantes del Suelo/análisis
9.
Ecotoxicol Environ Saf ; 143: 193-200, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28550806

RESUMEN

This study investigated the microcystins (MCs)-rich irrigation water effect on lettuce of different developmental stages, i.e. during a two months period, covering the whole period from seed germination to harvest at marketable size of the plant. We followed four lettuce plant groups receiving MCs-rich water (1.81µgl-1 of dissolved MCs), originating from the Karla Reservoir, central Greece: 1) from seeds, 2) the cotyledon, 3) two true leaves and 4) four true leaves stages, all of which were compared to control plants that received tap water. Lettuce growth, photosynthetic performance, biochemical and mineral characteristics, as well as MCs accumulation in leaves, roots and soil were measured. The overall performance of lettuce at various developmental stages pointed to increased tolerance since growth showed minor alterations and non-enzymatic antioxidants remained unaffected. Plants receiving MCs-rich water from the seed stage exhibited higher photosynthetic capacity, chlorophylls and leaf nitrogen content. Nevertheless, considerable MCs accumulation in various plant tissues occurred. The earlier in their development lettuce plants started receiving MCs-rich water, the more MCs they accumulated: roots and leaves of plants exposed to MCs-rich water from seeds and cotyledons stage exhibited doubled MCs concentrations compared to respective tissues of the 4 Leaves group. Furthermore, roots accumulated significantly higher MCs amounts than leaves of the same plant group. Concerning human health risk, the Estimated Daily Intake values (EDI) of Seed and Cotyledon groups leaves exceeded Tolerable Daily Intake (TDI) by a factor of 6, while 2 Leaves and 4 Leaves groups exceeded TDI by a factor of 4.4 and 2.4 respectively. Our results indicate that irrigation of lettuce with MCs-rich water may constitute a serious public health risk, especially when contaminated water is received from the very early developmental stages (seed and cotyledon). Finally, results obtained for the tolerant lettuce indicate that MCs bioaccumulation in edible tissues is not necessarily coupled with phytotoxic effects.


Asunto(s)
Lechuga/efectos de los fármacos , Microcistinas/farmacocinética , Microcistinas/toxicidad , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad , Riego Agrícola , Grecia , Humanos , Lechuga/crecimiento & desarrollo , Lechuga/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Medición de Riesgo
10.
Food Chem ; 214: 129-136, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27507457

RESUMEN

Soil salinization is an increasing problem for many areas throughout the world that renders prohibitive vegetables and crop production in general. In the present study, Cichorium spinosum L. plants were grown under saline conditions in order to evaluate chemical composition and bioactive compounds content of their leaves. Salinity increase resulted in significant changes of macro and micro-nutrients content (nutritional value, sugars, fatty acids, minerals, ascorbic acid and tocopherols), whereas the concentration of phenolic compounds was not significantly affected. Chicoric and 5-O-caffeoylquinic acid were the most abundant phenolic acids. In contrast, antioxidant activity and mineral composition were beneficially affected by mid-to-high and high salinity levels. In conclusion, C. spinosum can be cultivated under saline conditions without compromising the quality of the final product, especially in semi-arid areas where irrigation water is scarce and/or of low quality due to high content of NaCl (coastal areas or areas where underground water is saline).


Asunto(s)
Asteraceae/química , Valor Nutritivo , Hojas de la Planta/química , Salinidad , Suelo/química , Ácido Ascórbico/análisis , Ácido Clorogénico/análogos & derivados , Ácidos Grasos/análisis , Minerales/análisis , Fenoles/análisis , Ácido Quínico/análogos & derivados , Cloruro de Sodio/análisis , Tocoferoles/análisis
11.
Tree Physiol ; 36(9): 1117-26, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27406206

RESUMEN

A novel type of heliotropic leaf movement is presented for Capparis spinosa L., a summer perennial shrub of Mediterranean and arid ecosystems. In contrast to plants that demonstrate uniform diaheliotropic and/or paraheliotropic movement for all their foliage, the alternate leaves of C. spinosa follow different movement patterns according to their stem azimuth and the side of the stem that they come from (cluster). Additionally, leaf movement for each cluster may not be uniform throughout the day, showing diaheliotropic characteristics during half of the day and paraheliotropic characteristics during the rest of the day. In an attempt to reveal the adaptive significance of this differential movement pattern, the following hypotheses were tested: (i) increase of the intercepted solar radiation and photosynthesis, (ii) avoidance of photoinhibitory conditions, (iii) amelioration of water-use efficiency and (iv) adjustment of the leaf temperature microenvironment. No evidence was found in support of the first two hypotheses. A slight difference toward a better water use was found for the moving compared with immobilized leaves, in combination with a better cooling effect.


Asunto(s)
Capparis/fisiología , Hojas de la Planta/fisiología , Adaptación Fisiológica , Movimiento , Fotosíntesis , Agua/metabolismo
12.
J Plant Physiol ; 165(9): 952-9, 2008 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-17923168

RESUMEN

Leaf color in some individuals of Cistus creticus turns transiently to red during winter, while neighboring individuals occupying the same site remain green. We have examined whether anthocyanin accumulation can be associated with variations in photosynthetic and/or photoprotective characteristics between the two phenotypes, rendering the red phenotype more vulnerable to photoinhibition and, accordingly, needing additional protection in the form of anthocyanins. Towards this aim, maximum (pre-dawn) and effective (mid-day) PSII photochemical efficiencies, xanthophyll cycle pool sizes and leaf nitrogen contents were seasonably followed, encompassing both the green (spring, summer, autumn) and the red (winter) period of the year. Moreover, the distribution of the two phenotypes in exposed and shaded sites was assessed. The frequency of red individuals was considerably higher in fully exposed sites, pointing to a photoprotective function of leaf anthocyanins. Yet, the assumption was not corroborated by pre-dawn PSII yield measurements, since both phenotypes displayed similar high values throughout the year and a similar drop during winter. However, the red phenotype was characterized by lower light-saturated PSII yields, xanthophyll cycle pool sizes and leaf nitrogen, during both the green and the red period of the year. Based on this correlative evidence, we suggest that winter redness in C. creticus may compensate for an inherent photosynthetic and photoprotective inferiority, possibly through a light screen and/or an antioxidant function of leaf anthocyanins.


Asunto(s)
Antocianinas/metabolismo , Cistus/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Pigmentación/efectos de la radiación , Hojas de la Planta/metabolismo , Estaciones del Año , Biomasa , Cistus/efectos de la radiación , Nitrógeno/metabolismo , Fenotipo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de la radiación , Especificidad de la Especie , Xantófilas/metabolismo
13.
New Phytol ; 165(2): 463-72, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15720657

RESUMEN

Reflectance indices are frequently used for the nondestructive assessment of leaf chemistry, especially pigment content, in environmental or developmental studies. Since reflectance spectra are influenced by trichome density, and trichome density displays a considerable phenotypic plasticity, we asked whether this structural parameter could be a source of variation in the values of the most commonly used indices. Trichome density was manipulated in detached leaves of three species having either peltate (Olea europaea and Elaeagnus angustifolius) or tubular (Populus alba) trichomes by successive removal of hairs. After each dehairing step, trichome density was determined by light or scanning electron microscopy and reflectance spectra were obtained with a diode-array spectrometer. Although species-specific differences were evident, most of the indices were considerably affected even at low trichome densities. In general, the less-affected indices were those using wavebands within the visible spectral region. The index that could be safely used even at very high hair densities in all species was the red edge index (lambda(RE)) for chlorophyll. The results indicate that changes in reflectance indices should be interpreted cautiously when concurrent changes in trichome density are suspected. In this case, the red edge for chlorophyll content may be the index of choice.


Asunto(s)
Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Análisis Espectral/métodos , Elaeagnaceae/anatomía & histología , Olea/anatomía & histología , Hojas de la Planta/fisiología , Populus/anatomía & histología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...