Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Cell Death Differ ; 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879857

RESUMEN

Chemokines are important regulators of the immune system, inducing specific cellular responses by binding to receptors on immune cells. In SLE patients, decreased expression of CCL2 on mesenchymal stem cells (MSC) prevents inhibition of B-cell proliferation, causing the characteristic autoimmune phenotype. Nevertheless, the intrinsic role of CCL2 on B-cell autoimmunity is unknown. In this study using Ccl2 KO mice, we found that CCL2 deficiency enhanced BCR signaling by upregulating the phosphorylation of the MST1-mTORC1-STAT1 axis, which led to reduced marginal zone (MZ) B cells and increased germinal center (GC) B cells. The abnormal differentiation of MZ and GC B cells were rescued by in vivo inhibition of mTORC1. Additionally, the inhibition of MST1-mTORC1-STAT1 with specific inhibitors in vitro also rescued the BCR signaling upon antigenic stimulation. The deficiency of CCL2 also enhanced the early activation of B cells including B-cell spreading, clustering and signalosome recruitment by upregulating the DOCK8-WASP-actin axis. Our study has revealed the intrinsic role and underlying molecular mechanism of CCL2 in BCR signaling, B-cell differentiation, and humoral response.

2.
Medicine (Baltimore) ; 100(17): e25631, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33907118

RESUMEN

BACKGROUND: Interstitial lung disease (ILD) has a poor prognosis and lacks specific biomarkers for early diagnosis, assessment of disease severity, and prognosis. YKL-40 levels were found to be elevated in patients with ILD, but these results are inconsistent. Therefore, we conducted a systematic review and meta-analysis to accurately study the relation between YKL-40 and ILD. METHODS: We performed a systematic literature search in many databases (PubMed, Embase, the China National Knowledge Infrastructure, and Wanfang databases) and commercial Internet search engines to identify studies involving the role of YKL-40 in patients with ILD. The weighted mean difference with its 95% confidence interval were used to investigate the effect sizes. If obvious heterogeneity was found in the meta-analysis, the level of YKL-40 was directly compared by the Mann-Whitney test. RESULTS: Sixteen eligible articles were finally identified. The results showed that the serum YKL-40 levels of patients with idiopathic pulmonary fibrosis, connective tissue-related ILD, sarcoidosis, cryptogenic tissue pneumonia, asbestosis-ILD, and idiopathic nonspecific interstitial pneumonia were higher than those in controls, but there was no increase in patients with pulmonary alveolar proteinosis. We also found that there are certain differences in the serum YKL-40 levels in patients with different types of ILD. The results showed that the bronchoalveolar lavage fluid YKL-40 levels of patients with idiopathic pulmonary fibrosis were significantly higher than that in controls. A systematic review indicated that there were correlations between the serum YKL-40 levels and lung function in patients with different ILD. In addition, YKL-40 may be used as a valuable biomarker for survival, with risk ratios ranging from 1.006 to 10.9. CONCLUSIONS: This study suggests that YKL-40 may be a useful biomarker for the diagnosis and prognosis of ILD.

3.
Lab Chip ; 21(8): 1613-1622, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33683225

RESUMEN

Double emulsions with ultrathin shells are important in some biomedical applications, such as controlled drug release. However, the existing production techniques require two or more manipulation steps, or more complicated channel geometry, to form thin-shell double emulsions. This work presents a novel microfluidic tri-phasic step-emulsification device, with an easily fabricated double-layer PDMS channel, for production of oil-in-oil-in-water and water-in-water-in-oil double emulsions in a single step. The shell thickness is controlled by the flow rates and can reach 1.4% of the µm-size droplet diameter. Four distinct emulsification regimes are observed depending on the experimental conditions. A theoretical model for the tri-phasic step-emulsification is proposed to predict the boundaries separating the four regimes of emulsification in plane of two dimensionless capillary numbers, Ca. The theory yields two coupled nonlinear differential equations that can be solved numerically to find the approximate shape of the free interfaces in the shallow (Hele-Shaw) microfluidic channel. This approximation is then used as the initial guess for the more accurate finite element method solution, showing very good agreement with the experimental findings. This study demonstrates the feasibility of co-flow step-emulsification as a promising method to production of double (and multiple) emulsions and micro-capsules with ultrathin shells of controllable thickness.

4.
J Biomed Nanotechnol ; 17(2): 230-241, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33785094

RESUMEN

As a conventional complication of sepsis, acute kidney injury (AKI) is characterized by high incidence and mortality. Effective management methods are still lacking. Quercetin belongs to a kind of flavonoids that exerts many functions, for example anti-inflammation and anti-fibrosis. However, its function in sepsis AKI is uncertain. Our study therefore set out to assess the function of quercetin in AKI mice model induced by lipopolysaccharide (LPS) and human proximal tubular cells (HK-2), including the potential mechanisms. Quercetin was loaded onto a biodegradable polymer carrier (nanoparticle) to enhance its bioavailability. The data showed that quercetin administration strikingly improved renal dysfunction and ameliorated tubular injury caused by LPS in mice. In mice model and in cultured cells, quercetin pretreatment obviously restrained LPS-triggered cell apoptosis and inflammation, including generation of various cytokines. Moreover, the results from mice model and cell model showed that quercetin could diminish IκBα and p65 phosphorylation after LPS treatment. The most significant observation of this study was that quercetin elevated the expression of Sirt1. Transfection of Sirt1 specific shRNA mitigated the suppression of quercetin on cell apoptosis, inflammation and of NF-κB activation triggered by LPS. Therefore, these sequels indicate that quercetin protects against sepsis-associated AKI by upregulation Sirt1 expression through quenching NF-κB activation and may be an encouraging therapeutic agent for patients with sepsis-associated AKI.


Asunto(s)
FN-kappa B , Nanopartículas , Animales , Humanos , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Quercetina/farmacología , Sirtuina 1
5.
Eur J Pharmacol ; 898: 173975, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33647258

RESUMEN

Natural products are a large source of clinically effective antitumor drugs. Millepachine, a natural product derived from leguminous plants, was reported to display antitumor activity. In this study, the novel compound, (1H-indol-5-yl) (5-methoxy-2,2-dimethyl-2H-chromen-8-yl)methanone (MIL-1), was designed and synthesized by fusing millepachine and indole rings. MIL-1 exerted much better antitumor activity than millepachine, manifesting as a 24- to 201-fold increase in vitro cytotoxicity and a 2.4-fold increase in in vivo antitumor activity in hepatocellular cell lines-derived models. The immunofluorescence and HPLC detection revealed that MIL-1 was a potent microtubule targeting agent by interfering with the equilibrium of tubulin-microtubule dynamics and irreversibly binding to tubulin. MIL-1 displayed remarkable antitumor activity with an IC50 of 31-207 nM towards various human cancer cell lines derived from various organs and tissues, and it exerted no evidence of toxicity against normal cells. Mechanistic studies showed that MIL-1 arrested the cell cycle at G2/M phase and induced apoptosis by activating caspase-3 activity and reactive oxygen species (ROS) accumulation. Moreover, the superior antitumor effect of MIL-1 is worthy of further detailed study for the treatment of hepatocellular carcinoma (HCC).

6.
Eur J Pharmacol ; 898: 173972, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33652058

RESUMEN

Dehydrogenase/reductase member 2 (DHRS2) belongs to the short-chain dehydrogenase/reductase (SDR) family. It was initially isolated from the nuclear extract of hepatocellular carcinoma HepG2 cells and was identified as a specific cell cycle regulator. DHRS2 is a reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent carbonyl reductase and catalyzes the reduction of dicarbonyl compounds. It is also functionally active in lipid metabolism and acts as a metabolic enzyme of hormones. Recent studies have shown that DHRS2 reprograms lipid metabolism and redox homeostasis to regulate proliferation, migration, invasion, and drug resistance of cancer cells. Here, we describe the structure, organelle localization and function of DHRS2, and also highlight its roles in the pathologic progression of diseases.

7.
Talanta ; 228: 122060, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773722

RESUMEN

A fluorescent aptasensor based on porphyrin-based covalent organic framework (p-COF) and carbon dots (CDs) was constructed for detecting vascular endothelial growth factor 165 (VEGF165) and for imaging of the breast cancer cell line Michigan cancer foundation-7 (MCF-7). CDs synthesized with strong photoluminescence at λ∼380 nm were used as donors to label the VEGF165-targeted aptamers (AptVEGF/CDs). Additionally, the p-COF nanostructure comprised rich functional groups of CN on the surface and π-stacking planar nanostructure, resulting in the CDs adsorption via weakly π-π stacking, hydrogen bond and the Van der Waals force. Thereby, the fluorescence resonance energy transfer (FRET) occurred due to the close distance between the p-COF network and CDs, leading to the quenching of the fluorescence feature of CDs and p-COF. In the presence of VEGF165, the G-quadruplex was formed via the specific binding between VEGF165 and aptamer. It impelled that the release of partial VEGF165-AptVEGF/CDs complex, affording the fluorescence recovery of the sensing system to some extent. Consequently, the proposed AptVEGF/CDs/p-COF fluorescence biosensor offered excellent analytical performances for the VEGF165 detection, displaying a detection limit of 20.9 fg mL-1 within a wide linear range of the VEGF165 concentration of 1.0 pg mL-1-100 ng mL-1. The developed fluorescence biosensor was also used to determine VEGF165-overexpressed in MCF-7 cancer cells. Thereby, the present work can greatly widen the application of COFs in the development of aptasensors and cancer diagnosis.

8.
Mol Plant Pathol ; 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33764635

RESUMEN

A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A ) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.

9.
J Biomed Nanotechnol ; 17(1): 64-77, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653497

RESUMEN

Apigenin as a natural flavonoid product has been proved previously to play a renoprotective effect during ischemia/reperfusion injury (IRI), but the particular mechanisms involving the positive effects of apigenin remain totally unclear. The study investigated apigenin's roles and underlying biological mechanisms in IR-induced acute kidney injury (AKI). Thirty-six mice received a right nephrectomy and clamping of the left renal artery for 30 minutes, and then perfusion for 24 h. Apigenin was loaded onto a biodegradable polymer carrier (nanoparticle) to enhance its bioavailability. Mice were subjected to intraperitoneally injection with apigenin (5, 10 or 20 mg/kg) for 24 h before surgery. For in vitro experiments, mouse renal tubular epithelial cells (mRTECs) and miR-140-5p mimic/inhibitor transfected mRTECs were subjected to hypoxia/reoxygenation in the presence or absence of apigenin. In vitro, we uncovered that hypoxia/reoxygenation stimulation caused inflammatory injury in mRTECs. Apigenin reduced the hypoxia/reoxygenation-induced cell inflammatory injury and NF- B p65 nuclear translocation from cytoplasm and activation. Moreover, apigenin reduced hypoxia/reoxygenationtriggered miR-140-5p down-regulation. What's more, the luciferase reporter system revealed that miR-140-5p negatively regulates CXCL12, which is its direct target of action. CXCL12 exhibited an inhibitory effect on the apigenin-induced inactivation of NF- B signaling pathway. Furthermore, we observed that apigenin pretreatment attenuated the IR-triggered up-regulation of serum creatinine and blood urea nitrogen, elevation of pro-inflammatory cytokines secretion and tubular cell apoptosis, enhancement of CXCL12 and decline of miR-140-5p in vivo. Our studies show that apigenin protects against IR-triggered renal cell inflammatory injury in vivo and in vitro by miR-140-5p up-regulation and CXCL12 downregulation via quenching the NF- B pathway activation. Apigenin may be an encouraging therapeutic agent for patients with IR-associated kidney injury.


Asunto(s)
MicroARNs , Nanopartículas , Daño por Reperfusión , Animales , Apigenina/farmacología , Apoptosis , Quimiocina CXCL12 , Humanos , Isquemia , Riñón , Ratones , MicroARNs/genética , FN-kappa B/metabolismo , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Transducción de Señal
10.
J Med Internet Res ; 23(2): e23390, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33534722

RESUMEN

BACKGROUND: The initial symptoms of patients with COVID-19 are very much like those of patients with community-acquired pneumonia (CAP); it is difficult to distinguish COVID-19 from CAP with clinical symptoms and imaging examination. OBJECTIVE: The objective of our study was to construct an effective model for the early identification of COVID-19 that would also distinguish it from CAP. METHODS: The clinical laboratory indicators (CLIs) of 61 COVID-19 patients and 60 CAP patients were analyzed retrospectively. Random combinations of various CLIs (ie, CLI combinations) were utilized to establish COVID-19 versus CAP classifiers with machine learning algorithms, including random forest classifier (RFC), logistic regression classifier, and gradient boosting classifier (GBC). The performance of the classifiers was assessed by calculating the area under the receiver operating characteristic curve (AUROC) and recall rate in COVID-19 prediction using the test data set. RESULTS: The classifiers that were constructed with three algorithms from 43 CLI combinations showed high performance (recall rate >0.9 and AUROC >0.85) in COVID-19 prediction for the test data set. Among the high-performance classifiers, several CLIs showed a high usage rate; these included procalcitonin (PCT), mean corpuscular hemoglobin concentration (MCHC), uric acid, albumin, albumin to globulin ratio (AGR), neutrophil count, red blood cell (RBC) count, monocyte count, basophil count, and white blood cell (WBC) count. They also had high feature importance except for basophil count. The feature combination (FC) of PCT, AGR, uric acid, WBC count, neutrophil count, basophil count, RBC count, and MCHC was the representative one among the nine FCs used to construct the classifiers with an AUROC equal to 1.0 when using the RFC or GBC algorithms. Replacing any CLI in these FCs would lead to a significant reduction in the performance of the classifiers that were built with them. CONCLUSIONS: The classifiers constructed with only a few specific CLIs could efficiently distinguish COVID-19 from CAP, which could help clinicians perform early isolation and centralized management of COVID-19 patients.


Asunto(s)
/diagnóstico , Infecciones Comunitarias Adquiridas/diagnóstico , Aprendizaje Automático , Neumonía/diagnóstico , /patogenicidad , Área Bajo la Curva , /virología , Infecciones Comunitarias Adquiridas/sangre , Femenino , Humanos , Laboratorios , Recuento de Leucocitos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Neumonía/sangre , Polipéptido alfa Relacionado con Calcitonina/sangre , Curva ROC , Estudios Retrospectivos
11.
BMC Cancer ; 21(1): 50, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430831

RESUMEN

BACKGROUND: Despite much research published on lung cancer screening, China has had no large-scale study on the missed diagnosis of lung cancer in a health examination population. We therefore did a real-world study using the current lung cancer screening guidelines to a health examination population in China to determine the proportion of lung cancer cases that have been missed. METHODS: A real-world cohort study of screening, with the use of low-dose computed tomography, was conducted among people who took yearly health checkup in health management center of West China Hospital between 2006 and 2017. We respectively used current guidelines including lung cancer screening guidelines of the U.S. Preventive Services Task Force (USPSTF) and expert consensus on low dose spiral CT lung cancer screening in China. RESULTS: In a total of 15,996 participants with health examination who completed the baseline screening, 6779 (42.4%) subjects had at least one positive finding, and 142 (2.1%) cases of lung cancer were screened positive. The false positive rate was 97.9%. Of 142 lung cancer cases detected in our study, only 9.2% met the lung cancer screening guidelines proposed by the USPSTF, and 24.4% met that of China. The rates of missed diagnosis were as high as 90.8 and 75.6% respectively. In addition, we did an in-depth analysis by gender. We found that among male patients with lung cancer, the proportion of smokers was 75%, and the proportion of young people under 50 was 23.2%. Among female patients with lung cancer, the proportion of smokers was only 5.8%, and the proportion of young people under 50 was up to 33.3%. CONCLUSIONS: The rate of missed diagnosis was as high as 90.8% applying the current lung cancer screening guidelines to the health examination population in China. Further study to determine screening guidelines for targeted populations, is warranted.

12.
Photochem Photobiol ; 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33496343

RESUMEN

Macronutrient limitation and increased solar exposure coincide with ocean warming-enhanced stratification, with consequences for phytoplankton within the upper mixing layer. In this study, we grew a diatom, Thalassiosira punctigera, under nitrogen-limited and replete conditions for more than 14 generations and investigated both the biochemical composition of treated cells and their photochemical responses to high light and UV exposure. The photosynthetic pigment and the particulate organic nitrogen (PON) content significantly decreased in the low nitrate grown cells, with drastic decline of the absorption of UV absorbing compounds. Under an acute exposure to high light or UV radiation, we observed a significant decline in the photochemical yield along with an increase of nonphotosynthetic quenching (NPQ), with the former lowered and the latter raised in the low-nitrogen grown cells. The results reveal a decreased repair rate and enhanced photoinhibition of the diatom under nitrogen limitation when exposed to increased levels of light and UV radiation, suggesting a higher vulnerability of the diatom phytoplankton under influences of oceanic global change.

13.
Neurosci Bull ; 37(4): 478-496, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33355899

RESUMEN

Tweety-homolog 1 (Ttyh1) is expressed in neural tissue and has been implicated in the generation of several brain diseases. However, its functional significance in pain processing is not understood. By disrupting the gene encoding Ttyh1, we found a loss of Ttyh1 in nociceptors and their central terminals in Ttyh1-deficient mice, along with a reduction in nociceptor excitability and synaptic transmission at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) in the basal state. More importantly, the peripheral inflammation-evoked nociceptor hyperexcitability and spinal synaptic potentiation recorded in spinal-PAG projection neurons were compromised in Ttyh1-deficient mice. Analysis of the paired-pulse ratio and miniature excitatory postsynaptic currents indicated a role of presynaptic Ttyh1 from spinal nociceptor terminals in the regulation of neurotransmitter release. Interfering with Ttyh1 specifically in nociceptors produces a comparable pain relief. Thus, in this study we demonstrated that Ttyh1 is a critical determinant of acute nociception and pain sensitization caused by peripheral inflammation.

14.
J Investig Med ; 69(3): 761-767, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33361403

RESUMEN

The present study sought to investigate the association between silent information regulator 1 (SIRT1) and autophagy during systemic inflammatory response syndrome following burn injury. The experimental burn model in mice and macrophages were established. SIRT1 mRNA expression was quantified by quantitative real-time PCR. The protein levels of SIRT1 and the conversion of light chain 3 (LC3)-I to LC3-II were determined by western blot analysis. The formation of autophagosomes was assessed by green fluorescence protein-tagged LC3 fluorescence. The contents of inflammatory cytokines interleukin (IL)-1, IL-6, IL-10 and IL-18 were measured by ELISA. SIRT1 was highly expressed in burned tissues and RAW264.7 cells treated with serum obtained from mice with burn injuries. Moreover, SIRT1 overexpression augmented, whereas sirtinol, an inhibitor of SIRT1, attenuated burn injury-induced increasing number of autophagosomes and expression levels of LC3-II/LC3-I in RAW264.7 cells. Besides, sirtinol effectively prevented SIRT1-induced pro-inflammation during burn injury. Furthermore, autophagy inhibition by 3-methyladenine significantly attenuated SIRT1 overexpression-mediated pro-inflammatory cytokine production. SIRT1 abolished burn injury-induced inflammatory response by inducing autophagy.

15.
J Basic Microbiol ; 61(1): 55-62, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33332633

RESUMEN

The residual erythromycin in fermentation waste can pollute the environment and threaten human health. However, there are no effective approaches to remedy this issue. In this study, an erythromycin-degrading bacterium named RJJ-61 was isolated and identified as a strain of Delftia lacustris based on morphological and phylogenetic analyses. The degradation ability of this strain was also evaluated; it could degrade 45.18% of erythromycin at 35°C in 120 h. Furthermore, the key degradation gene ereA was cloned from strain RJJ-61 and expressed in Escherichia coli BL21; the molecular weight of the expressed protein was ~45 kDa. The enzyme activity of EreA was 108.0 mU ml-1 at 35°C and pH 7.0. Finally, the EreA protein was used to degrade erythromycin from mycelial dregs and 50% diluted solution, and the removal rates in them were 41.42% and 69.78%, respectively. In summary, D. lacustris RJJ-61 is a novel erythromycin-degrading strain that has great potential to remove erythromycin pollutants from the environment.

16.
Technol Cancer Res Treat ; 19: 1533033820971600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33280522

RESUMEN

OBJECTIVE: This study aims to explore the clinical value of systemic chemotherapy combined with bronchoscopic seed implantation in advanced lung cancer treatment. METHODS: The study enrolled 253 patients with advanced lung cancer in Cangzhou People's Hospital from March 2018 to March 2020, and they were divided into test group and control group. Test group was given systemic chemotherapy combined with bronchoscopic seed implantation, while control group was given systemic chemotherapy. The objective response rate of tumor (ORR), disease control rate (DCR), serum tumor marker level, survival time and adverse reactions of 2 groups were compared. RESULTS: After treatment, the levels of serum tumor markers including carcino-embryonic antigen, neuro-specific enolase, cytokeratin-19 and pro-gastrin-releasing peptide were markedly decreased in test group compared with those in control group (P < 0.05). Therein, the serum tumor marker level of non-small cell lung cancer (NSCLC) patients was significant decreased compared with that of small cell lung cancer (SCLC) patients in test group. Meanwhile, in test group, the serum tumor marker level of lung adenocarcinoma (LUAD) patients was significant decreased compared with that of lung squamous cell carcinoma (LUSC, P < 0.05). The ORR and DCR in test group were superior to those in control group (63.4%, 92.5% vs 38.7%, 72.3%, P < 0.05), while those were much higher in patients with NSCLC and LUAD relative to those in patients with SCLC and LUSC, respectively (P < 0.05). Furthermore, the progression-free survival (PFS) and overall survival (OS) in test group were significantly greater than those in control group. In test group, the PFS and OS of patients with NSCLC and LUAD were higher than those of patients with SCLC and LUSC. CONCLUSION: The efficacy of systemic chemotherapy combined with bronchoscopic seed implantation was superior to that of systemic chemotherapy, which is worthy of promoting in clinical practice.

17.
Chin J Nat Med ; 18(12): 907-915, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33357721

RESUMEN

Cardiovascular disease is the main cause of mortality and morbidity in the world, especially in developing countries. Drug therapy is one of the main ways to treat cardiovascular diseases. Among them, great progress has been made in the treatment of cardiovascular diseases with traditional Chinese medicine. In terms of experimental research, the mechanism of traditional Chinese medicine in the treatment of cardiovascular diseases has been thoroughly discussed in vitro and in vivo. In terms of clinical treatment, traditional Chinese medicine with flavonoids, saponins and alkaloids as the main effective components has a definite effect on the treatment of cardiovascular diseases such as arrhythmia, myocardial ischemia, angina pectoris and myocardial infarction, with high safety and good application prospects. With the further research on the effective ingredients, mechanism and adverse reactions of traditional Chinese medicine, it will be beneficial to the effectiveness of traditional Chinese medicine, reduce side effects and promote the modernization of traditional Chinese medicine. Calycosin and its derivatives, the main bioactive flavonoids in Astragalus membranaceus have multiple biological effects, such as antioxidant, pro-angiogenesis, anti-tumour, and anti-inflammatory effects. Based on the above biological effects, calycosin has been shown to have good potential for cardiovascular protection. The potent antioxidant effect of calycosin may play an important role in the cardiovascular protective potential. For injured cardiac myocytes, calycosin and its derivatives can alleviate the cell damage mainly marked by the release of myocardial enzymes and reduce the death level of cardiac myocytes mainly characterized by apoptosis through various mechanisms. For vascular endothelial cells, calycosin also has multiple effects and multiple mechanisms, such as promoting vascular endothelial cell proliferation, exerting vasodilating effect and directly affecting the synthesis function of endothelial cells. The present review will address the bioactivity of calycosin in cardiovascular diseases such as protective effects on cardiac myocytes and vascular endothelial cells and elucidate main mechanism of calycosin and its derivatives to exert the above biological effects.

18.
BMC Cardiovasc Disord ; 20(1): 481, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176699

RESUMEN

BACKGROUND: Keshan disease is an endemic cardiomyopathy of undefined causes. Being involved in the unclear pathogenesis of Keshan disease, a clear diagnosis, and effective treatment cannot be initiated. However, the rapid development of gut flora in cardiovascular disease combined with omics and big data platforms may promote the discovery of new diagnostic markers and provide new therapeutic options. This study aims to identify biomarkers for the early diagnosis and further explore new therapeutic targets for Keshan disease. METHODS: This cohort study consists of two parts. Though the first part includes 300 participants, however, recruiting will be continued for the eligible participants. After rigorous screening, the blood samples, stools, electrocardiograms, and ultrasonic cardiogram data would be collected from participants to elucidate the relationship between gut flora and host. The second part includes a prospective follow-up study for every 6 months within 2 years. Finally, deep mining of big data and rapid machine learning will be employed to analyze the baseline data, experimental data, and clinical data to seek out the new biomarkers to predict the pathogenesis of Keshan disease. DISCUSSION: Our study will clarify the distribution of gut flora in patients with Keshan disease and the abundance and population changes of gut flora in different stages of the disease. Through the big data platform analyze the relationship between environmental factors, clinical factors, and gut flora, the main factors affecting the occurrence of Keshan disease were identified, and the changed molecular pathways of gut flora were predicted. Finally, the specific gut flora and molecular pathways affecting Keshan disease were identified by metagenomics combined with metabonomic analysis. TRIAL REGISTRATION: ChiCTR1900026639. Registered on 16 October 2019.

19.
Front Pharmacol ; 11: 568459, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101026

RESUMEN

High recurrence rates and poor survival of patients with esophageal squamous cell carcinoma (ESCC) after treatment make ongoing research on chemoprevention drugs for ESCC particularly important. In this study, we screened a large number of FDA-approved drugs and found levodopa, a drug used to treat Parkinson's disease, had an inhibitory effect on the growth of ESCC cells. To elucidate the molecular mechanisms involved, we applied quantitative proteomics to investigate the anti-tumor activity of levodopa on ESCC. The results suggest that levodopa could down-regulate oxidative phosphorylation, non-alcoholic fatty liver disease, and Parkinson's disease pathways. Major mitochondrial respiratory compounds were involved in the pathways, including succinate dehydrogenase subunit D, NADH-ubiquinone oxidoreductase Fe-S protein 4, and mitochondrial cytochrome c oxidase subunit 3. Down-regulation of these proteins was associated with mitochondrial dysfunction. Western blotting and immunofluorescence results confirmed the proteomics findings. Cell viability assays indicated mitochondrial activity was suppressed after levodopa treatment. Reduced mitochondrial membrane potential was detected using JC-1 staining and TMRE assays. Transmission electron microscopy revealed changes in the morphology of mitochondria. Taken together, these results indicate that levodopa inhibited the growth of ESCC through restraining mitochondria function.

20.
J Mater Chem B ; 8(43): 9951-9960, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33034309

RESUMEN

A 2D CuNi metal-organic framework (MOF) named CuxNi3-x(HHTP)2 was synthesized with 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) as the linker and was used as a sensitive scaffold to adsorb aptamer strands for the electrochemical detection of living C6 glioma cells and one of their biomarkers, epidermal growth factor receptor (EGFR). Different from conventional MOFs, the CuxNi3-x(HHTP)2 MOF comprises long-range delocalized electrons, a graphene-analog nanostructure, multiple metal states (Cu0/Cu+/Cu2+ and Ni2+/Ni3+), and abundant oxygen vacancies. With these features, the CuxNi3-x(HHTP)2 MOF anchored a large amount of C6 cell-targeted aptamer strands via coordination among metal centers, oligonucleotides, π-π stacking, and van der Waals force. The CuxNi3-x(HHTP)2-based cytosensor showed a low limit of detection (LOD) of 21 cells mL-1 toward C6 glioma cells within a wide range from 50 cells mL-1 to 1 × 105 cells mL-1. Moreover, the proposed aptasensor displayed high selectivity, good stability, acceptable reproducibility, and a low LOD of 0.72 fg mL-1 for detecting EGFR with the concentration ranging from 1 fg mL-1 to 1 ng mL-1. The aptasensor based on the CuxNi3-x(HHTP)2 MOF exhibited superior sensing performance over those based on its monometallic analogues such as Cu3(HHTP)2 MOF and Ni3(HHTP)2 MOF. Hence, this sensing strategy based on a bimetallic semiconducting MOF shows great potential for cancer diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...